scispace - formally typeset
Search or ask a question
Author

Ian Broadwell

Bio: Ian Broadwell is an academic researcher from Xiamen University. The author has contributed to research in topics: Nanomaterials & Electrochemical energy conversion. The author has an hindex of 10, co-authored 12 publications receiving 1230 citations.

Papers
More filters
Journal ArticleDOI
Zhi-You Zhou1, Na Tian1, Jun-Tao Li1, Ian Broadwell1, Shi-Gang Sun1 
TL;DR: This critical review presents a review of the progress made for producing shape-controlled synthesis of nanomaterials of high surface energy using electrochemical and wet chemistry techniques and discusses important nanommaterials such as nanocrystal catalysts based on Pt, Pd, Au and Fe, metal oxides TiO(2) and SnO( 2), as well as lithium Mn-richMetal oxides.
Abstract: The properties of nanomaterials for use in catalytic and energy storage applications strongly depends on the nature of their surfaces. Nanocrystals with high surface energy have an open surface structure and possess a high density of low-coordinated step and kink atoms. Possession of such features can lead to exceptional catalytic properties. The current barrier for widespread industrial use is found in the difficulty to synthesise nanocrystals with high-energy surfaces. In this critical review we present a review of the progress made for producing shape-controlled synthesis of nanomaterials of high surface energy using electrochemical and wet chemistry techniques. Important nanomaterials such as nanocrystal catalysts based on Pt, Pd, Au and Fe, metal oxides TiO2 and SnO2, as well as lithium Mn-rich metal oxides are covered. Emphasis of current applications in electrocatalysis, photocatalysis, gas sensor and lithium ion batteries are extensively discussed. Finally, a future synopsis about emerging applications is given (139 references).

710 citations

Journal ArticleDOI
Qing Hua Zeng1, Qing Lin Liu1, Ian Broadwell1, Ai Mei Zhu1, Ying Xiong1, Xing Peng Tu1 
TL;DR: The Nature Science Foundation of China [20976145] as discussed by the authors, Nature Science foundation of Fujian Province, China [2009J01040], [2005038401].

261 citations

Journal ArticleDOI
TL;DR: Significant progress has already been made in the electrocatalytic field, and likely emerging techniques based on NCs enclosed with high-energy surfaces and high-index facets could provide a promising platform to investigate the surface structure-Catalytic functionality at nanoscale, thus shedding light on the rational design of practical catalysts with high activity, selectivity, and durability for energy conversion and storage.
Abstract: ConspectusThe performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed.In ...

125 citations

Journal ArticleDOI
TL;DR: The body of work summarized here has substantially advanced the knowledge of electrode processes and represents the forefront in studies of EECS at the molecular level.
Abstract: With their ability to convert chemical energy of fuels directly into electrical power or reversibly store electrical energy, systems such as fuel cells and lithium ion batteries are of great importance in managing energy use In these electrochemical energy conversion and storage (EECS) systems, controlled electrochemical redox reactions generate or store the electrical energy, ideally under conditions that avoid or kinetically suppress side reactions A comprehensive understanding of electrode reactions is critical for the exploration and optimization of electrode materials and is therefore the key issue for developing advanced EECS systems Based on its fingerprint and surface selection rules, electrochemical in-situ FTIR spectroscopy (in-situ FTIRS) can provide real-time information about the chemical nature of adsorbates and solution species as well as intermediate/product species involved in the electrochemical reactions These unique features make this technique well-suited for insitu studies of EEC

96 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to solve the problem of artificial neural networks in the field of ecology and evolutionary biology, which was proposed by the National Nature Science Foundation of China (NNFSCFG).

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Abstract: Because of the remarkably high theoretical energy output, metal–air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal–air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal–air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic–organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal–air batteries (219 references).

2,211 citations

Journal ArticleDOI
TL;DR: In this paper, an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells).
Abstract: This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current state-of-the-art, technological and scientific limitations, and the future challenges (research priorities) related to the use of anion-exchange membranes in these energy technologies. All the references that the authors deemed relevant, and were available on the web by the manuscript submission date (30th April 2014), are included.

1,526 citations

Journal ArticleDOI
TL;DR: It is shown that the problem of sulfur loss can be effectively diminished by controlling the sulfur as smaller allotropes in the confined space of a conductive microporous carbon matrix.
Abstract: The lithium–sulfur battery holds a high theoretical energy density, 4–5 times that of today’s lithium-ion batteries, yet its applications have been hindered by poor electronic conductivity of the sulfur cathode and, most importantly, the rapid fading of its capacity due to the formation of soluble polysulfide intermediates (Li2Sn, n = 4–8). Despite numerous efforts concerning this issue, combatting sulfur loss remains one of the greatest challenges. Here we show that this problem can be effectively diminished by controlling the sulfur as smaller allotropes. Metastable small sulfur molecules of S2–4 were synthesized in the confined space of a conductive microporous carbon matrix. The confined S2–4 as a new cathode material can totally avoid the unfavorable transition between the commonly used large S8 and S42–. Li–S batteries based on this concept exhibit unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior rate capability, which promise a practicable bat...

1,443 citations