scispace - formally typeset
Search or ask a question
Author

Ian Flint

Other affiliations: Télécom ParisTech
Bio: Ian Flint is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Wireless network & Wireless. The author has an hindex of 10, co-authored 25 publications receiving 443 citations. Previous affiliations of Ian Flint include Télécom ParisTech.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that the RF-powered sensor performs better when the distribution of the ambient sources exhibits stronger repulsion, and two common receiver architectures are analyzed: separated receiver and time-switching architectures.
Abstract: Ambient radio frequency (RF) energy harvesting technique has recently been proposed as a potential solution for providing proactive energy replenishment for wireless devices. This paper aims to analyze the performance of a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic geometry approach. Specifically, we consider the point-to-point uplink transmission of a wireless sensor in a stochastic geometry network, where ambient RF sources, such as mobile transmit devices, access points and base stations, are distributed as a Ginibre $\alpha$ -determinantal point process (DPP). The DPP is able to capture repulsion among points, and hence, it is more general than the Poisson point process (PPP). We analyze two common receiver architectures: separated receiver and time-switching architectures. For each architecture, we consider the scenarios with and without co-channel interference for information transmission. We derive the expectation of the RF energy harvesting rate in closed form and also compute its variance. Moreover, we perform a worst-case study which derives the upper bound of both power and transmission outage probabilities. Additionally, we provide guidelines on the setting of optimal time-switching coefficient in the case of the time-switching architecture. Numerical results verify the correctness of the analysis and show various tradeoffs between parameter setting. Lastly, we prove that the RF-powered sensor performs better when the distribution of the ambient sources exhibits stronger repulsion.

82 citations

Journal ArticleDOI
TL;DR: A stochastic geometry framework based on the Ginibre model is adopted to analyze the performance of self-sustainable communications over cellular networks with general fading channels and shows analytically that the power-splitting architecture outperforms the time-switching architecture in terms of transmission outage performances.
Abstract: RF-enabled wireless power transfer and energy harvesting has recently emerged as a promising technique to provision perpetual energy replenishment for low-power wireless networks. The network devices are replenished by the RF energy harvested from the transmission of ambient RF transmitters, which offers a practical and promising solution to enable self-sustainable communications. This paper adopts a stochastic geometry framework based on the Ginibre model to analyze the performance of self-sustainable communications over cellular networks with general fading channels. Specifically, we consider the point-to-point downlink transmission between an access point and a battery-free device in the cellular networks, where the ambient RF transmitters are randomly distributed following a repulsive point process, called Ginibre $\alpha$ -determinantal point process (DPP). Two practical RF energy harvesting receiver architectures, namely time-switching and power-splitting, are investigated. We perform an analytical study on the RF-powered device and derive the expectation of the RF energy harvesting rate, the energy outage probability and the transmission outage probability over Nakagami- $m$ fading channels. These are expressed in terms of so-called Fredholm determinants, which we compute efficiently with modern techniques from numerical analysis. Our analytical results are corroborated by the numerical simulations, and the efficiency of our approximations is demonstrated. In practice, the accurate simulation of any of the Fredholm determinant appearing in the manuscript is a matter of seconds. An interesting finding is that a smaller value of $\alpha$ (corresponding to larger repulsion) yields a better transmission outage performance when the density of the ambient RF transmitters is small. However, it yields a lower transmission outage probability when the density of the ambient RF transmitters is large. We also show analytically that the power-splitting architecture outperforms the time-switching architecture in terms of transmission outage performances. Lastly, our analysis provides guidelines for setting the time-switching and power-splitting coefficients at their optimal values.

64 citations

Proceedings ArticleDOI
TL;DR: This paper analyzes the performance of a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic-geometry approach and considers a random network model in which ambient RF sources are distributed as a Ginibre α-determinantal point process which recovers the Poisson point process when α approaches zero.
Abstract: Ambient RF (Radio Frequency) energy harvesting technique has recently been proposed as a potential solution to provide proactive energy replenishment for wireless devices. This paper aims to analyze the performance of a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic-geometry approach. Specifically, we consider a random network model in which ambient RF sources are distributed as a Ginibre $\alpha$-determinantal point process which recovers the Poisson point process when alpha? approaches zero. We characterize the expected RF energy harvesting rate.We also perform a worst-case study which derives the upper bounds of both power outage and transmission outage probabilities. Numerical results show that our upper bounds are accurate and that better performance is achieved when the distribution of ambient sources exhibits stronger repulsion.

55 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: In this paper, the performance of a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic-geometry approach is analyzed. But the authors consider a random network model in which ambient RF sources are distributed as a Ginibre α-determinantal point process which recovers the Poisson point process when α approaches zero.
Abstract: Ambient RF (Radio Frequency) energy harvesting techniques have recently been proposed as a potential solution to provide proactive energy replenishment for wireless devices. This paper aims to analyze the performance of a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic-geometry approach. Specifically, we consider a random network model in which ambient RF sources are distributed as a Ginibre α-determinantal point process which recovers the Poisson point process when α approaches zero. We characterize the expected RF energy harvesting rate. We also perform a worst-case study which derives the upper bounds of both power outage and transmission outage probabilities. Numerical results show that our upper bounds are accurate and that better performance is achieved when the distribution of ambient sources exhibits stronger repulsion.

49 citations

Journal ArticleDOI
TL;DR: In this paper, by exploiting the Laplace transform of the α-GPP, semi-closed-form expressions for the considered performance metrics are introduced and an upper bound of the power outage probability is provided.
Abstract: Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink using the energy harvested from the signals transmitted by the ambient RF sources. We analyze the performance of the network, i.e., the mean of the harvested energy, the power outage probability, and the transmission outage probability. In many practical networks, the locations of the ambient RF sources are spatially correlated and the ambient sources exhibit repulsive behaviors. Therefore, we model the spatial distribution of the ambient sources as an $\alpha $ -Ginibre point process ( $\alpha $ -GPP), which reflects the repulsion among the RF sources and includes the Poisson point process as a special case. We also assume that the fading channel is Nakagami- $m$ distributed, which also includes Rayleigh fading as a particular case. In this paper, by exploiting the Laplace transform of the $\alpha $ -GPP, we introduce semi-closed-form expressions for the considered performance metrics and provide an upper bound of the power outage probability. The derived expressions are expressed in terms of the Fredholm determinant, which can be computed numerically. In order to reduce the complexity in computing the Fredholm determinant, we provide a simple closed-form expression for the Fredholm determinant, which allows us to evaluate the Fredholm determinant much more efficiently. The accuracy of our analytical results is validated through simulation results.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.

1,504 citations

01 Jan 2016
TL;DR: An introduction to the theory of point processes is universally compatible with any devices to read and will help you get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading an introduction to the theory of point processes. As you may know, people have search hundreds times for their chosen novels like this an introduction to the theory of point processes, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some harmful virus inside their computer. an introduction to the theory of point processes is available in our digital library an online access to it is set as public so you can download it instantly. Our book servers hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the an introduction to the theory of point processes is universally compatible with any devices to read.

903 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications, with regard to network applications and discuss open issues and challenges in implementing wireless charging technologies.
Abstract: Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this paper, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.

718 citations

Journal ArticleDOI
TL;DR: An overview of the past and recent developments in energy harvesting communications and networking is presented and a number of possible future research avenues are highlighted.
Abstract: Recent emphasis on green communications has generated great interest in the investigations of energy harvesting communications and networking. Energy harvesting from ambient energy sources can potentially reduce the dependence on the supply of grid or battery energy, providing many attractive benefits to the environment and deployment. However, unlike the conventional stable energy, the intermittent and random nature of the renewable energy makes it challenging in the realization of energy harvesting transmission schemes. Extensive research studies have been carried out in recent years to address this inherent challenge from several aspects: energy sources and models, energy harvesting and usage protocols, energy scheduling and optimization, implementation of energy harvesting in cooperative, cognitive radio, multiuser and cellular networks, etc. However, there has not been a comprehensive survey to lay out the complete picture of recent advances and future directions. To fill such a gap, in this paper, we present an overview of the past and recent developments in these areas and highlight a number of possible future research avenues.

519 citations