scispace - formally typeset
Search or ask a question
Author

Ian Foster

Bio: Ian Foster is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Grid computing & Grid. The author has an hindex of 131, co-authored 891 publications receiving 94811 citations. Previous affiliations of Ian Foster include University of Southern California & University of Wisconsin-Madison.


Papers
More filters
Book
01 Oct 1998
TL;DR: The Globus Toolkit as discussed by the authors is a toolkit for high-throughput resource management for distributed supercomputing applications, focusing on real-time wide-distributed instrumentation systems.
Abstract: Preface Foreword 1. Grids in Context 2. Computational Grids I Applications 3 Distributed Supercomputing Applications 4 Real-Time Widely Distributed Instrumentation Systems 5 Data-Intensive Computing 6 Teleimmersion II Programming Tools 7 Application-Specific Tools 8 Compilers, Languages, and Libraries 9 Object-Based Approaches 10 High-Performance Commodity Computing III Services 11 The Globus Toolkit 12 High-Performance Schedulers 13 High-Throughput Resource Management 14 Instrumentation and Measurement 15 Performance Analysis and Visualization 16 Security, Accounting, and Assurance IV Infrastructure 17 Computing Platforms 18 Network Protocols 19 Network Quality of Service 20 Operating Systems and Network Interfaces 21 Network Infrastructure 22 Testbed Bridges from Research to Infrastructure Glossary Bibliography Contributor Biographies

7,569 citations

Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

Posted Content
TL;DR: This article reviews the "Grid problem," and presents an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In this article, we define this new field. First, we review the "Grid problem," which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources-what we refer to as virtual organizations. In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. Next, we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. We describe requirements that we believe any such mechanisms must satisfy, and we discuss the central role played by the intergrid protocols that enable interoperability among different Grid systems. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

3,595 citations

01 Jan 2002
TL;DR: This presentation complements an earlier foundational article, “The Anatomy of the Grid,” by describing how Grid mechanisms can implement a service-oriented architecture, explaining how Grid functionality can be incorporated into a Web services framework, and illustrating how the architecture can be applied within commercial computing as a basis for distributed system integration.
Abstract: In both e-business and e-science, we often need to integrate services across distributed, heterogeneous, dynamic “virtual organizations” formed from the disparate resources within a single enterprise and/or from external resource sharing and service provider relationships. This integration can be technically challenging because of the need to achieve various qualities of service when running on top of different native platforms. We present an Open Grid Services Architecture that addresses these challenges. Building on concepts and technologies from the Grid and Web services communities, this architecture defines a uniform exposed service semantics (the Grid service); defines standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location transparency and multiple protocol bindings for service instances; and supports integration with underlying native platform facilities. The Open Grid Services Architecture also defines, in terms of Web Services Description Language (WSDL) interfaces and associated conventions, mechanisms required for creating and composing sophisticated distributed systems, including lifetime management, change management, and notification. Service bindings can support reliable invocation, authentication, authorization, and delegation, if required. Our presentation complements an earlier foundational article, “The Anatomy of the Grid,” by describing how Grid mechanisms can implement a service-oriented architecture, explaining how Grid functionality can be incorporated into a Web services framework, and illustrating how our architecture can be applied within commercial computing as a basis for distributed system integration—within and across organizational domains. This is a DRAFT document and continues to be revised. The latest version can be found at http://www.globus.org/research/papers/ogsa.pdf. Please send comments to foster@mcs.anl.gov, carl@isi.edu, jnick@us.ibm.com, tuecke@mcs.anl.gov Physiology of the Grid 2

3,455 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments.
Abstract: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work. A low-level toolkit provides basic mechanisms such as communication, authentication, network information, and data access. These mechanisms are used to con struct various higher level metacomputing services, such as parallel programming tools and schedulers. The long- term goal is to build an adaptive wide area resource environment AWARE, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments. Preliminary versions of Globus components were deployed successfully as part of the I-WAY networking experiment.

3,450 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations