scispace - formally typeset
Search or ask a question
Author

Ian H. Jermyn

Bio: Ian H. Jermyn is an academic researcher from Durham University. The author has contributed to research in topics: Active contour model & Shape analysis (digital geometry). The author has an hindex of 22, co-authored 89 publications receiving 3568 citations. Previous affiliations of Ian H. Jermyn include New York University & French Institute for Research in Computer Science and Automation.


Papers
More filters
Proceedings Article
23 Aug 1999
TL;DR: This work proposes and evaluates new graphical password schemes that exploit features of graphical input displays to achieve better security than text-based passwords and describes the prototype implementation of one of the schemes on a personal digital assistants (PDAs) namely the Palm PilotTM.
Abstract: In this paper we propose and evaluate new graphical password schemes that exploit features of graphical input displays to achieve better security than text-based passwords. Graphical input devices enable the user to decouple the position of inputs from the temporal order in which those inputs occur, and we show that this decoupling can be used to generate password schemes with substantially larger (memorable) password spaces. In order to evaluate the security of one of our schemes, we devise a novel way to capture a subset of the "memorable" passwords that, we believe, is itself a contribution. In this work we are primarily motivated by devices such as personal digital assistants (PDAs) that offer graphical input capabilities via a stylus, and we describe our prototype implementation of one of our password schemes on such a PDA, namely the Palm PilotTM.

869 citations

Journal ArticleDOI
TL;DR: This paper introduces a square-root velocity (SRV) representation for analyzing shapes of curves in euclidean spaces under an elastic metric and demonstrates a wrapped probability distribution for capturing shapes of planar closed curves.
Abstract: This paper introduces a square-root velocity (SRV) representation for analyzing shapes of curves in euclidean spaces under an elastic metric. In this SRV representation, the elastic metric simplifies to the IL2 metric, the reparameterization group acts by isometries, and the space of unit length curves becomes the unit sphere. The shape space of closed curves is the quotient space of (a submanifold of) the unit sphere, modulo rotation, and reparameterization groups, and we find geodesics in that space using a path straightening approach. These geodesics and geodesic distances provide a framework for optimally matching, deforming, and comparing shapes. These ideas are demonstrated using: 1) shape analysis of cylindrical helices for studying protein structure, 2) shape analysis of facial curves for recognizing faces, 3) a wrapped probability distribution for capturing shapes of planar closed curves, and 4) parallel transport of deformations for predicting shapes from novel poses.

636 citations

Journal ArticleDOI
TL;DR: The aims of this paper are to define Gaussian mixture models (GMMs) of colored texture on several feature spaces and to compare the performance of these models in various classification tasks, both with each other and with other models popular in the literature.

325 citations

Proceedings ArticleDOI
17 Jun 2007
TL;DR: A "spherical" version of the Fisher-Rao metric is proposed that provides closed-form expressions for geodesies and distances, and allows fast computation of sample statistics and an application in planar shape classification is presented.
Abstract: Applications in computer vision involve statistically analyzing an important class of constrained, non-negative functions, including probability density functions (in texture analysis), dynamic time-warping functions (in activity analysis), and re-parametrization or non-rigid registration functions (in shape analysis of curves). For this one needs to impose a Riemannian structure on the spaces formed by these functions. We propose a "spherical" version of the Fisher-Rao metric that provides closed-form expressions for geodesies and distances, and allows fast computation of sample statistics. To demonstrate this approach, we present an application in planar shape classification.

215 citations

Proceedings ArticleDOI
17 Jun 2007
TL;DR: A novel representation of continuous, closed curves in Rn that is quite efficient for analyzing their shapes and presents a fast algorithm for finding geodesies in shape spaces using the elastic metric and path-straightening methods.
Abstract: We propose a novel representation of continuous, closed curves in Rn that is quite efficient for analyzing their shapes. We combine the strengths of two important ideas-elastic shape metric and path-straightening methods - in shape analysis and present a fast algorithm for finding geodesies in shape spaces. The elastic metric allows for optimal matching of features while path-straightening provides geodesies between curves. Efficiency results from the fact that the elastic metric becomes the simple L2 metric in the proposed representation. We present step-by-step algorithms for computing geodesies in this framework, and demonstrate them with 2-D as well as 3-D examples.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An efficient segmentation algorithm is developed based on a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image and it is shown that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties.
Abstract: This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions.

5,791 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: In this paper, the user marks certain pixels as "object" or "background" to provide hard constraints for segmentation, and additional soft constraints incorporate both boundary and region information.
Abstract: In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both "object" and "background" segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm.

3,571 citations

Journal ArticleDOI
TL;DR: Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual- tree approach.
Abstract: The paper discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing The authors use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform The four fundamentals, intertwined shortcomings of wavelet transform and some solutions are also discussed Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual-tree approach

2,407 citations

Journal ArticleDOI
TL;DR: This application epitomizes the best features of combinatorial graph cuts methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual cues and constraints, unrestricted topological properties of segments, and applicability to N-D problems.
Abstract: Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features of combinatorial graph cuts methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual cues and constraints, unrestricted topological properties of segments, and applicability to N-D problems. Graph cuts based approaches to object extraction have also been shown to have interesting connections with earlier segmentation methods such as snakes, geodesic active contours, and level-sets. The segmentation energies optimized by graph cuts combine boundary regularization with region-based properties in the same fashion as Mumford-Shah style functionals. We present motivation and detailed technical description of the basic combinatorial optimization framework for image segmentation via s/t graph cuts. After the general concept of using binary graph cut algorithms for object segmentation was first proposed and tested in Boykov and Jolly (2001), this idea was widely studied in computer vision and graphics communities. We provide links to a large number of known extensions based on iterative parameter re-estimation and learning, multi-scale or hierarchical approaches, narrow bands, and other techniques for demanding photo, video, and medical applications.

2,076 citations

Proceedings Article
01 Jan 1999

2,010 citations