scispace - formally typeset
Search or ask a question
Author

Ian Hornstra

Bio: Ian Hornstra is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Lysyl oxidase & Elastin. The author has an hindex of 8, co-authored 10 publications receiving 795 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Lox gene expression was deleted by targeted mutagenesis in mice to determine the role of LOX in the development of tissue integrity and lysyl oxidase appears critical for structural stability of the aorta and diaphragm and connective tissue development.

301 citations

Journal ArticleDOI
TL;DR: The results suggest that synthesis and assembly of elastic fibers are crucial for recovery of pelvic organ support after vaginal delivery and that disordered elastic fiber homeostasis is a primary event in the pathogenesis of pelvic organs prolapse in mice.
Abstract: Pelvic organ prolapse is strongly associated with a history of vaginal delivery. The mechanisms by which pregnancy and parturition lead to failure of pelvic organ support, however, are not known. Recently, it was reported that mice with null mutations in lysyl oxidase-like 1 (LOXL1) develop pelvic organ prolapse. Elastin is a substrate for lysyl oxidase (LOX) and LOXL1, and LOXL1 interacts with fibulin-5 (FBLN5). Therefore, to clarify the potential role of elastic fiber assembly in the pathogenesis of pelvic organ prolapse, pelvic organ support was characterized in Fbln5-/- mice, and changes in elastic fiber homeostasis in the mouse vagina during pregnancy and parturition were determined. Pelvic organ prolapse in Fbln5-/- mice was remarkably similar to that in primates. The temporal relationship between LOX mRNA and protein, processing of LOXL1 protein, FBLN5 and tropoelastin protein, and desmosine content in the vagina suggest that a burst of elastic fiber assembly and cross linking occurs in the vaginal wall postpartum. Together with the phenotype of Fbln5-/- mice, the results suggest that synthesis and assembly of elastic fibers are crucial for recovery of pelvic organ support after vaginal delivery and that disordered elastic fiber homeostasis is a primary event in the pathogenesis of pelvic organ prolapse in mice.

172 citations

Journal ArticleDOI
TL;DR: The results showed that the pro-regions of LOX and LOXL play a significant role in directing the deposition of both enzymes onto elastic fibers by mediating interactions with tropoelastin.

139 citations

Journal ArticleDOI
TL;DR: Findings provide evidence for LOXL1 involvement in the initial stages of abnormal fibrogenesis in PEX tissues and suggest Alterations ofLOXL1 activation, processing, and/or substrate specificity may contribute to the abnormal aggregation of elastic fiber components into characteristic PEX fibrils.
Abstract: Pseudoexfoliation (PEX) syndrome is a generalized disease of the extracellular matrix and the most common identifiable cause of open-angle glaucoma. Two single nucleotide polymorphisms in the lysyl oxidase-like 1 (LOXL1) gene (rs1048661 and rs3825942) have been recently identified as strong genetic risk factors for both PEX syndrome and PEX glaucoma. Here we investigated the expression and localization of LOXL1, LOXL2, and lysyl oxidase (LOX) in tissues of PEX syndrome/glaucoma patients and controls in correlation with their individual single nucleotide polymorphism genotypes and stages of disease. LOXL1 ocular expression was reduced by approximately 20% per risk allele of rs1048661, whereas risk alleles of rs3825942, which were highly overrepresented in PEX cases, did not affect LOXL1 expression levels. Irrespective of the individual genotype, LOXL1 expression was significantly increased in early PEX stages but was decreased in advanced stages both with and without glaucoma compared with controls, whereas LOX and LOXL2 showed no differences between groups. LOXL1 was also found to be a major component of fibrillar PEX aggregates in both intra- and extraocular locations and to co-localize with various elastic fiber components. These findings provide evidence for LOXL1 involvement in the initial stages of abnormal fibrogenesis in PEX tissues. Alterations of LOXL1 activation, processing, and/or substrate specificity may contribute to the abnormal aggregation of elastic fiber components into characteristic PEX fibrils.

119 citations

Journal ArticleDOI
TL;DR: This series lends support to the speculation that MEDF may be associated with immunosuppression and as clinicians who care for patients with HIV infection, it is important to be aware that MEDf may be seen in this Immunosuppressed population.
Abstract: Background: Multiple eruptive dermatofibromas (MEDF) are rare and their etiology is unknown. An association with immunosuppression has led to the speculation that they are the resul

52 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.

3,396 citations

Journal ArticleDOI
TL;DR: This review describes the major biological processes associated with both normal and pathologic healing of acute wounds, characterized by four distinct, but overlapping phases: hemostasis, inflammation, proliferation and remodeling.
Abstract: Acute wounds normally heal in a very orderly and efficient manner characterized by four distinct, but overlapping phases: hemostasis, inflammation, proliferation and remodeling. Specific biological markers characterize healing of acute wounds. Likewise, unique biologic markers also characterize pathologic responses resulting in fibrosis and chronic non-healing ulcers. This review describes the major biological processes associated with both normal and pathologic healing. The normal healing response begins the moment the tissue is injured. As the blood components spill into the site of injury, the platelets come into contact with exposed collagen and other elements of the extracellular matrix. This contact triggers the platelets to release clotting factors as well as essential growth factors and cytokines such as platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta). Following hemostasis, the neutrophils then enter the wound site and begin the critical task of phagocytosis to remove foreign materials, bacteria and damaged tissue. As part of this inflammatory phase, the macrophages appear and continue the process of phagocytosis as well as releasing more PDGF and TGF beta. Once the wound site is cleaned out, fibroblasts migrate in to begin the proliferative phase and deposit new extracellular matrix. The new collagen matrix then becomes cross-linked and organized during the final remodeling phase. In order for this efficient and highly controlled repair process to take place, there are numerous cell-signaling events that are required. In pathologic conditions such as non-healing pressure ulcers, this efficient and orderly process is lost and the ulcers are locked into a state of chronic inflammation characterized by abundant neutrophil infiltration with associated reactive oxygen species and destructive enzymes. Healing proceeds only after the inflammation is controlled. On the opposite end of the spectrum, fibrosis is characterized by excessive matrix deposition and reduced remodeling. Often fibrotic lesions are associated with increased densities of mast cells. By understanding the functional relationships of these biological processes of normal compared to abnormal wound healing, hopefully new strategies can be designed to treat the pathological conditions.

1,910 citations

Journal ArticleDOI
24 May 2006-Nature
TL;DR: There are new approaches to enforce necrotic cell death and tumour regression by targeting tumour metabolism and pHi-control systems.
Abstract: Tumour cells emerge as a result of genetic alteration of signal circuitries promoting cell growth and survival, whereas their expansion relies on nutrient supply. Oxygen limitation is central in controlling neovascularization, glucose metabolism, survival and tumour spread. This pleiotropic action is orchestrated by hypoxia-inducible factor (HIF), which is a master transcriptional factor in nutrient stress signalling. Understanding the role of HIF in intracellular pH (pH(i)) regulation, metabolism, cell invasion, autophagy and cell death is crucial for developing novel anticancer therapies. There are new approaches to enforce necrotic cell death and tumour regression by targeting tumour metabolism and pH(i)-control systems.

1,595 citations

Journal ArticleDOI
TL;DR: Current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression are discussed, and how improving understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies.
Abstract: Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.

1,280 citations