scispace - formally typeset
Search or ask a question
Author

Ian M. Clarkson

Bio: Ian M. Clarkson is an academic researcher from Durham University. The author has contributed to research in topics: Diene & Cycloaddition. The author has an hindex of 4, co-authored 5 publications receiving 1409 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the radiative rate constants for depopulation of the excited states of closely-related series of anionic, neutral and cationic europium, terbium and ytterbium complexes have been measured in H2O and D2O.
Abstract: The radiative rate constants for depopulation of the excited states of closely-related series of anionic, neutral and cationic europium, terbium and ytterbium complexes have been measured in H2O and D2O. With the aid of selective ligand deuteriation, the relative contributions of OH, NH (both amide and amine) and CH oscillators have been measured and critically assessed. Quenching of the Eu 5D0 excited state by amine NH oscillators is more than twice as efficient as OH quenching. The importance of the distance between the excited Ln ion and the XH oscillator is described with recourse to published crystallographic information. The general equation, q = A′(ΔkH2O–kD2O)corr is presented and revised values of A′ for Eu (1.2 ms), Tb (5 ms) and Yb (1 µs) given, which allow for the quenching contribution of closely diffusing OH oscillators. The relevance of such studies to the hydration state of certain gadolinium complexes is described and clear evidence provided for a break in hydration at gadolinium.

1,233 citations

Journal ArticleDOI
TL;DR: The sensitised luminescence from stable lanthanide complexes bearing a phenanthridine antenna has been used to generate time-resolved images of silica particles to demonstrate time-gated imaging of the sample from a fluorescent background and to facilitate lifetime mapping over the area of the samples.
Abstract: The sensitised luminescence from stable lanthanide complexes (1 and 2) bearing a phenanthridine antenna has been used to generate time-resolved images of silica particles. The millisecond order luminescent lifetime of these complexes is utilised to demonstrate time-gated imaging of the sample from a fluorescent background and to facilitate lifetime mapping over the area of the sample.

205 citations

Journal ArticleDOI
TL;DR: The overall quantum yields for phenanthridinium sensitised emission from a europium ion have been measured in H2O and D2O for a series of five structurally related, octadentate ligands in which the distance from the phenanthrinium chromophore to the Eu ion varies from 2.5 to ca.8.2 A.
Abstract: The overall quantum yields for phenanthridinium sensitised emission from a europium ion have been measured in H2O and D2O for a series of five structurally related, octadentate ligands in which the distance from the phenanthridinium chromophore to the Eu ion varies from 2.5 to ca. 8.2 A. Overall quantum yields (pD⩽2) range from 0.25 to 0.012 suggesting that the experimental distance for 50% efficiency of intramolecular energy transfer lies close to 5.5 A for this system.

54 citations

Journal ArticleDOI
TL;DR: The siloxysilene derived from thermolysis of benzoylpolysilane undergoes a facile in situ cycloaddition with a range of dienes to produce the corresponding cycloadducts with modest to good diastereoselectivity as discussed by the authors.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices.
Abstract: Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.)

3,242 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI
TL;DR: This data indicates that the prostate-Specific antigen in the europium-Tetracycline complex acts as a ‘spatially aggregating force’ to form terbium complexes in the Optical Probes.
Abstract: Keywords: Time-Resolved Fluorescence ; Resonance Energy-Transfer ; Near-Infrared Luminescence ; Double-Stranded Dna ; Prostate-Specific Antigen ; Photoinduced Electron-Transfer ; Europium-Tetracycline Complex ; Sybr-Green-I ; Terbium Complexes ; Optical Probes Reference EPFL-ARTICLE-149396doi:10.1021/cr900362eView record in Web of Science Record created on 2010-06-17, modified on 2017-05-12

2,223 citations

Journal ArticleDOI
TL;DR: The trivalent europium ion (Eu3+) is well known for its strong luminescence in the red spectral region, but this ion is also interesting from a theoretical point of view as mentioned in this paper.

1,906 citations

Journal ArticleDOI
TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Abstract: When a molecule absorbs a photon of appropriate energy, a chain of photophysical events ensues, such as internal conversion or vibrational relaxation (loss of energy in the absence of light emission), fluorescence, intersystem crossing (from singlet state to a triplet state) and phosphorescence, as shown in the Jablonski diagram for organic molecules (Fig. 1). Each of the processes occurs with a certain probability, characterized by decay rate constants (k). It can be shown that the average length of time τ for the set of molecules to decay from one state to another is reciprocally proportional to the rate of decay: τ = 1/k. This average length of time is called the mean lifetime, or simply lifetime. It can also be shown that the lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e. Correspondingly, the fluorescence lifetime is the time required by a population of excited fluorophores to decrease exponentially to N/e via the loss of energy through fluorescence and other non-radiative processes. The lifetime of photophycal processes vary significantly from tens of femotoseconds for internal conversion1,2 to nanoseconds for fluorescence and microseconds or seconds for phosphorescence.1 Open in a separate window Figure 1 Jablonski diagram and a timescale of photophysical processes for organic molecules.

1,829 citations