scispace - formally typeset
Search or ask a question
Author

Ian M. White

Other affiliations: University of Missouri, Sprint Corporation, University of Bath  ...read more
Bio: Ian M. White is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Resonator & Optical ring resonators. The author has an hindex of 41, co-authored 148 publications receiving 8932 citations. Previous affiliations of Ian M. White include University of Missouri & Sprint Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations

Journal ArticleDOI
TL;DR: A rigorous definition for the detection limit of resonant RI sensors is set forth that accounts for all parameters that affect the detection performance and will lead to design strategies for performance improvement of RI sensors.
Abstract: Refractive index (RI) sensors based on optical resonance techniques are receiving a high degree of attention because of the need to develop simple, low-cost, high-throughput detection technologies for a number of applications. While the sensing mechanism of most of the reported RI sensors is similar, the construction is quite different from technique to technique. It is desirable to have a uniform mechanism for comparing the various RI sensing techniques, but to date there exists a degree of variation as to how the sensing performance is quantified. Here we set forth a rigorous definition for the detection limit of resonant RI sensors that accounts for all parameters that affect the detection performance. Our work will enable a standard approach for quantifying and comparing the performance of optical resonance-based RI sensors. Additionally, it will lead to design strategies for performance improvement of RI sensors.

942 citations

Journal ArticleDOI
TL;DR: The mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, are emphasized.
Abstract: Optofluidics - the synergistic integration of photonics and microfluidics - has recently emerged as a new analytical field that provides a number of unique characteristics for enhanced sensing performance and simplification of microsystems. In this review, we describe various optofluidic architectures developed in the past five years, emphasize the mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, and envision new research directions to which optofluidics leads.

797 citations

Journal ArticleDOI
TL;DR: The LCORR takes advantage of the high sensitivity, small footprint, and low sample consumption with the ring resonator, as well as the efficient fluidic sample delivery with the capillary, and will open an avenue to future multiplexed sensor array development.
Abstract: We have demonstrated a novel sensor architecture based on a liquid-core optical ring-resonator (LCORR) in which a fused silica capillary is utilized to carry the aqueous sample and to act as the ring resonator. The wall thickness of the LCORR is controlled to a few micrometers to expose the whispering gallery mode to the aqueous core. Optical characterization with a water-ethanol mixture shows that the spectral sensitivity of the LCORR sensor is approximately 2.6 nm per refractive index unit. A model based on Mie theory is established to explain the experimental results. The LCORR takes advantage of the high sensitivity, small footprint, and low sample consumption with the ring resonator, as well as the efficient fluidic sample delivery with the capillary, and will open an avenue to future multiplexed sensor array development.

469 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral position of the whispering gallery mode (WGM) of a sphere shifts in response to the refractive index change in the surrounding medium, resulting in a sensitivity of approximately 30nm∕RIU (refractive index units).
Abstract: We have developed a highly sensitive refractometric sensor based on fused silica microsphere resonators. The spectral position of the whispering gallery mode (WGM) of a sphere shifts in response to the refractive index change in the surrounding medium. The strong light-matter interaction due to the extremely high Q factor associated with the WGM results in a sensitivity of approximately 30nm∕RIU (refractive index units). This, together with the high spectral resolution of our sensor system (∼0.01pm), yields a detection limit of refractive index change on the order of 10−7RIU. Theoretical calculation is also performed and agrees well with the experimental data.

361 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations