scispace - formally typeset
Search or ask a question
Author

Ian M. Winter

Bio: Ian M. Winter is an academic researcher from University of Cambridge. The author has contributed to research in topics: Cochlear nucleus & Auditory system. The author has an hindex of 23, co-authored 63 publications receiving 2035 citations. Previous affiliations of Ian M. Winter include University of Western Australia & University of Southampton.


Papers
More filters
Journal ArticleDOI
TL;DR: Diversity of CF rate-intensity functions has functional implications for both frequency and intensity coding at high sound pressures in the mammalian auditory system.

277 citations

Journal ArticleDOI
TL;DR: Comparison of rate-intensity functions at characteristic frequency and at a tail-frequency show that the rate- intensity functions are identical at low firing rates and that the sloping-saturation and straight types deviate from the standard function only at higher firing rates.

230 citations

Journal ArticleDOI
TL;DR: This work finds that scene analysis starts much earlier in the auditory pathways than previously reported, and reveals that subcortical structures may already contribute to the analysis of auditory scenes.

220 citations

Journal ArticleDOI
TL;DR: Nonmonotonic rate-level functions for tones at characteristic frequency were observed across all unit types classified by the post-stimulus time histogram scheme and an unexpected finding was a small number of primarylike units characterised by reduced driven discharge rates within their response areas.

132 citations

Journal ArticleDOI
TL;DR: The results show that the efferent projections to the cochlea and cochlear nucleus generally form two separate neuronal systems even though they share many common nuclei of origin.
Abstract: Projections from auditory brainstem nuclei to the cochlear nuclei in the guinea pig were studied by injection of two retrograde fluorescent neuronal tracers. For seven experiments fast blue was injected into the scala tympani of one cochlea and diamidino yellow was injected into dorsal or anteroventral cochlear nucleus of the same side. The results show that the efferent projections to the cochlea and cochlear nucleus generally form two separate neuronal systems even though they share many common nuclei of origin. The largest projections to the cochlear nucleus come bilaterally from the lateral and ventral nuclei of the trapezoid body. Other nuclei, the lateral superior olive, the ventral nucleus of the lateral lemniscus, the dorsomedial periolivary nuclei, and the medial nucleus of the trapezoid body showed an ipsilateral bias in their projections to the cochlear nucleus. An upper limit of 3.5% of the medial system olivocochlear efferent neurones projecting to the cochlea were labelled with both diamidino yellow and fast blue, suggesting that few efferent neurones projecting to the cochlea send collaterals to the cochlear nucleus in this species. However, the site of medial system olivocochlear efferent collateral terminations is the granule cell area for the cat, mouse, and gerbil. When diamidino yellow was injected in the superficial layers of the cochlear nucleus, including the superficial granule cell layer of the ventral cochlear nucleus, approximately 3.6% of medial system olivocochlear efferents projecting to the cochlea sent collaterals to the cochlear nucleus. In three animals fast blue was injected into the cochlear nucleus and diamidino yellow into the cochlea. These experiments revealed a greater proportion of the medial system olivocochlear efferents projecting to the cochlea sending collaterals to the cochlear nucleus, but this proportion was still less than 10%. These results were confirmed by the extracellular injection of horseradish peroxidase into the intraganglionic spiral bundle. Only three medial system olivocochlear efferents were observed to send collaterals to the cochlear nucleus. This number was less than 10% of all labelled medial system fibres. Although these experiments suggest that in the guinea pig the number of olivocochlear efferents sending collaterals to the cochlear nucleus is considerably smaller than is found for the cat, mouse, and gerbil, it is not possible with the current experimental procedures to conclude whether the results are due to species or methodological differences.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier."
Abstract: In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.

1,423 citations

Journal ArticleDOI
TL;DR: The picture that emerges is that temporal modulations are a critical stimulus attribute that assists us in the detection, discrimination, identification, parsing, and localization of acoustic sources and that this wide-ranging role is reflected in dedicated physiological properties at different anatomical levels.
Abstract: Joris, P. X., C. E. Schreiner, and A. Rees. Neural Processing of Amplitude-Modulated Sounds. Physiol Rev 84: 541–577, 2004; 10.1152/physrev.00029.2003.—Amplitude modulation (AM) is a temporal featu...

856 citations

Journal Article
TL;DR: Alk-3-en-1-ols are produced in good yields from isobutylene and formaldehyde in the presence of organic carboxylic acid salts of Group IB metals.
Abstract: The yield of alkenols and cycloalkenols is substantially improved by carrying out the reaction of olefins with formaldehyde in the presence of selected catalysts. In accordance with one embodiment, alk-3-en-1-ols are produced in good yields from isobutylene and formaldehyde in the presence of organic carboxylic acid salts of Group IB metals.

851 citations

Journal ArticleDOI
TL;DR: Responses from single auditory nerve fibers in guinea pigs exposed to neuropathic noise were recorded, suggesting recovery of hair cell function and a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates.
Abstract: Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.

609 citations

Journal ArticleDOI
TL;DR: Age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise is characterized and key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.
Abstract: Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.

601 citations