scispace - formally typeset
Author

Ibrahim Dincer

Bio: Ibrahim Dincer is an academic researcher from University of Ontario Institute of Technology. The author has contributed to research in topic(s): Exergy & Exergy efficiency. The author has an hindex of 110, co-authored 1479 publication(s) receiving 56573 citation(s). Previous affiliations of Ibrahim Dincer include King Fahd University of Petroleum and Minerals & University of Victoria.

...read more

Papers
More filters

Book
01 Jan 2007-
Abstract: This book deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. It provides comprehensive coverage of exergy and its applications. It connects exergy with three essential areas in terms of energy, environment and sustainable development. It presents the most up-to-date information in the area with recent developments. It provides a number of illustrative examples, practical applications, and case studies. It features an easy to follow style, starting from the basics to the advanced systems.

...read more

1,931 citations


Journal ArticleDOI
Ibrahim Dincer1Institutions (1)
Abstract: Achieving solutions to environmental problems that we face today requires long-term potential actions for sustainable development. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions. That is why there is an intimate connection between renewable energy and sustainable development. Anticipated patterns of future energy use and consequent environmental impacts (focussing on acid precipitation, stratospheric ozone depletion and the greenhouse effect) are comprehensively discussed in this paper. Also, potential solutions to current environmental problems are identified along with renewable energy technologies. The relations between renewable energy and sustainable development are described with practical cases, and an illustrative example is presented. Throughout the paper several issues relating to renewable energy, environment and sustainable development are examined from both current and future perspectives. It is believed that the conclusions and recommendations drawn in the present study will be useful to energy scientists and engineers and policy makers.

...read more

1,457 citations


Book
29 Apr 2002-
Abstract: List of Contributors.Acknowledgements.Preface.General Introductory Aspects for Thermal Engineering. Energy Storage Systems. Thermal Energy Storage (TES) Methods. Thermal Energy Storage and Environmental Impact. Thermal Energy Storage and Energy Savings. Heat Transfer and Stratification in Sensible Heat Storage Systems. Modeling of Latent Heat Storage Systems. Heat Transfer with Phase Change in Simple and Complex Geometries. Thermodynamic Optimization of Thermal Energy Storage Systems. Energy and Exergy Analyses of Thermal Energy Storage Systems. Thermal Energy Storage Case Studies.Appendix A -- Conversion Factors.Appendix B -- Thermophysical Properties.Appendix C -- Glossary.Subject Index.

...read more

1,269 citations


Journal ArticleDOI
Ibrahim Dincer1, Ibrahim Dincer2, Canan Acar1Institutions (2)
Abstract: This paper examines various potential methods of hydrogen production using renewable and non-renewable sources and comparatively assesses them for environmental impact, cost, energy efficiency and exergy efficiency. The social cost of carbon concept is also included to present the relations between environmental impacts and economic factors. Some of the potential primary energy sources considered in this study are: electrical, thermal, biochemical, photonic, electro-thermal, photo-electric, and photo-biochemical. The results show that when used as the primary energy source, photonic energy based hydrogen production (e.g., photocatalysis, photoelectrochemical method, and artificial photosynthesis) is more environmentally benign than the other selected methods in terms of emissions. Thermochemical water splitting and hybrid thermochemical cycles (e.g. Cu–Cl, S–I, and Mg–Cl) also provide environmentally attractive results. Both photoelectrochemical method and PV electrolysis are found to be least attractive when production costs and efficiencies are considered. Therefore, increasing both energy and exergy efficiencies and decreasing the costs of hydrogen production from solar based hydrogen production have a potential to bring them forefront as potential options. The energy and exergy efficiency comparisons indicate the advantages of fossil fuel reforming and biomass gasification over other methods. Overall rankings show that hybrid thermochemical cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.

...read more

1,048 citations


Journal ArticleDOI
Ibrahim Dincer1Institutions (1)
Abstract: This paper discusses environmentally benign and sustainable, as green, methods for hydrogen production and categorizes them based on the driving sources and applications. Some potential sources are electrical, thermal, biochemical, photonic, electro-thermal, photo-thermal, photo-electric, photo-biochemical, and thermal-biochemical. Such forms of energy can be derived from renewable sources, nuclear energy and from energy recovery processes for hydrogen production purposes. These processes are analyzed and assessed for comparison purposes. Various case studies are presented to highlight the importance of green hydrogen production methods and systems for practical applications.

...read more

529 citations


Cited by
More filters

Journal ArticleDOI
Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

...read more

3,746 citations


Journal ArticleDOI
Abstract: Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.

...read more

3,637 citations


Journal ArticleDOI
Abstract: Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed.

...read more

2,338 citations


Journal ArticleDOI
Soteris A. Kalogirou1Institutions (1)
Abstract: In this paper a survey of the various types of solar thermal collectors and applications is presented. Initially, an analysis of the environmental problems related to the use of conventional sources of energy is presented and the benefits offered by renewable energy systems are outlined. A historical introduction into the uses of solar energy is attempted followed by a description of the various types of collectors including flat-plate, compound parabolic, evacuated tube, parabolic trough, Fresnel lens, parabolic dish and heliostat field collectors. This is followed by an optical, thermal and thermodynamic analysis of the collectors and a description of the methods used to evaluate their performance. Typical applications of the various types of collectors are presented in order to show to the reader the extent of their applicability. These include solar water heating, which comprise thermosyphon, integrated collector storage, direct and indirect systems and air systems, space heating and cooling, which comprise, space heating and service hot water, air and water systems and heat pumps, refrigeration, industrial process heat, which comprise air and water systems and steam generation systems, desalination, thermal power systems, which comprise the parabolic trough, power tower and dish systems, solar furnaces, and chemistry applications. As can be seen solar energy systems can be used for a wide range of applications and provide significant benefits, therefore, they should be used whenever possible.

...read more

2,285 citations


Book ChapterDOI
01 Jan 1982-
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

...read more

2,046 citations


Network Information
Related Authors (5)
Calin Zamfirescu

130 papers, 3.1K citations

93% related
H. Ishaq

36 papers, 523 citations

91% related
Osamah Siddiqui

44 papers, 568 citations

91% related
Nader Javani

37 papers, 939 citations

91% related
H.S. Hamut

17 papers, 306 citations

90% related
Performance
Metrics

Author's H-index: 110

No. of papers from the Author in previous years
YearPapers
20224
2021111
2020121
201980
2018119
201790

Top Attributes

Show by:

Author's top 5 most impactful journals

International Journal of Hydrogen Energy

272 papers, 12.8K citations

International Journal of Energy Research

117 papers, 5.5K citations

Energy Conversion and Management

75 papers, 2.8K citations

Energy

70 papers, 2.7K citations

Applied Thermal Engineering

59 papers, 3.5K citations