scispace - formally typeset
Author

Ibrahim N. Hajj

Bio: Ibrahim N. Hajj is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topic(s): Very-large-scale integration & Electronic circuit. The author has an hindex of 32, co-authored 162 publication(s) receiving 3444 citation(s). Previous affiliations of Ibrahim N. Hajj include Hewlett-Packard & American University of Beirut.


Papers
More filters
Journal ArticleDOI
TL;DR: A source-coding framework for the design of coding schemes to reduce transition activity for high-capacitance buses where the extra power dissipation due to the encoder and decoder circuitry is offset by the power savings at the bus.
Abstract: This paper presents a source-coding framework for the design of coding schemes to reduce transition activity. These schemes are suited for high-capacitance buses where the extra power dissipation due to the encoder and decoder circuitry is offset by the power savings at the bus. In this framework, a data source (characterized in a probabilistic manner) is first passed through a decorrelating function f/sub 1/. Next, a variant of entropy coding function f/sub 2/ is employed, which reduces the transition activity. The framework is then employed to derive novel encoding schemes whereby practical forms for f/sub 1/ and f/sub 2/ are proposed. Simulation results with an encoding scheme for data buses indicate an average reduction in transition activity of 36%. This translates into a reduction in total power dissipation for bus capacitances greater than 14 pF/b in 1.2 /spl mu/m CMOS technology. For a typical value for bus capacitance of 50 pF/b, there is a 36% reduction in power dissipation and eight times more power savings compared to existing schemes. Simulation results with an encoding scheme for instruction address buses indicate an average reduction in transition activity by a factor of 1.5 times over known coding schemes.

231 citations

Journal ArticleDOI
TL;DR: A current-estimation approach to support the analysis of electromigration (EM) failures in power supply and ground buses of CMOS VLSI circuits is discussed and has shown excellent accuracy and dramatic speedups compared with traditional approaches.
Abstract: A current-estimation approach to support the analysis of electromigration (EM) failures in power supply and ground buses of CMOS VLSI circuits is discussed. It uses the original concept of probabilistic simulation to efficiently generate accurate estimates of the expected current waveform required for electromigration analysis. Thus, the approach is pattern-independent and relieves the designer of the tedious task of specifying logical input waveforms. This approach has been implemented in the program CREST (current estimator) which has shown excellent accuracy and dramatic speedups compared with traditional approaches. The approach and its implementation are described, and the results of numerous CREST runs on real circuits are presented. >

201 citations

Journal ArticleDOI
TL;DR: A pattern-independent, linear time algorithm (iMax) that estimates at every contact point, an upper bound envelope of all possible current waveforms that result by the application of different input patterns to the circuit is proposed.
Abstract: Currents flowing in the power and ground (P&G) buses of CMOS digital circuits affect both circuit reliability and performance by causing excessive voltage drops. Excessive voltage drops manifest themselves as glitches on the P&G buses and cause erroneous logic signals and degradation in switching speeds. Maximum current estimates are needed at every contact point in the buses to study the severity of the voltage drop problems and to redesign the supply lines accordingly. These currents, however, depend on the specific input patterns that are applied to the circuit. Since it is prohibitively expensive to enumerate all possible input patterns, this problem has, for a long time, remained largely unsolved. In this paper, we propose a pattern-independent, linear time algorithm (iMax) that estimates at every contact point, an upper bound envelope of all possible current waveforms that result by the application of different input patterns to the circuit. The algorithm is extremely efficient and produces good results for most circuits as is demonstrated by experimental results on several benchmark circuits. The accuracy of the algorithm can be further improved by resolving the signal correlations that exist inside a circuit. We also present a novel partial input enumeration (PIE) technique to resolve signal correlations and significantly improve the upper bounds for circuits where the bounds produced by iMax are not tight. We establish with extensive experimental results that these algorithms represent a good time-accuracy trade-off and are applicable to VLSI circuits. >

156 citations

Journal ArticleDOI
TL;DR: A test vector simulation-based approach for multiple design error diagnosis and correction in digital VLSI circuits that is applicable to circuits with no global binary decision diagram representation.
Abstract: With the increase in the complexity of digital VLSI circuit design, logic design errors can occur during synthesis. In this paper, we present a test vector simulation-based approach for multiple design error diagnosis and correction. Diagnosis is performed through an implicit enumeration of the erroneous lines in an effort to avoid the exponential explosion of the error space as the number of errors increases. Resynthesis during correction is as little as possible so that most of the engineering effort invested in the design is preserved. Since both steps are based on test vector simulation, the proposed approach is applicable to circuits with no global binary decision diagram representation. Experiments on ISCAS'85 benchmark circuits exhibit the robustness and error resolution of the proposed methodology. Experiments also indicate that test vector simulation is indeed an attractive technique for multiple design error diagnosis and correction in digital VLSI circuits.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on low-power design techniques for high-performance processors at the architectural and compiler levels, and propose a method that uses an additional minicache located between the I-Cache and the central processing unit (CPU) core and buffers instructions that are nested within loops and are continuously otherwise fetched from the ICache.
Abstract: In this paper, we focus on low-power design techniques for high-performance processors at the architectural and compiler levels. We focus mainly on developing methods for reducing the energy dissipated in the on-chip caches. Energy dissipated in caches represents a substantial portion in the energy budget of today's processors. Extrapolating current trends, this portion is likely to increase in the near future, since the devices devoted to the caches occupy an increasingly larger percentage of the total area of the chip. We propose a method that uses an additional minicache located between the I-Cache and the central processing unit (CPU) core and buffers instructions that are nested within loops and are continuously otherwise fetched from the I-Cache. This mechanism is combined with code modifications, through the compiler, that greatly simplify the required hardware, eliminate unnecessary instruction fetching, and consequently reduce signal switching activity and the dissipated energy. We show that the additional cache, dubbed L-Cache, is much smaller and simpler than the I-Cache when the compiler assumes the role of allocating instructions to it. Through simulation, we show that for the SPECfp95 benchmarks, the I-Cache remains disabled most of the time, and the "cheaper" extra cache is used instead. We also propose different techniques that are better adapted to nonnumeric nonloop-intensive code.

106 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

30,199 citations

Journal ArticleDOI

1,003 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: Results indicate that gated-Vdd together with a novel resizable cache architecture reduces energy-delay by 62% with minimal impact on performance.
Abstract: Deep-submicron CMOS designs have resulted in large leakage energy dissipation in microprocessors. While SRAM cells in on-chip cache memories always contribute to this leakage, there is a large variability in active cell usage both within and across applications. This paper explores an integrated architectural and circuit-level approach to reducing leakage energy dissipation in instruction caches. We propose, gated-V/sub dd/, a circuit-level technique to gate the supply voltage and reduce leakage in unused SRAM cells. Our results indicate that gated-V/sub dd/ together with a novel resizable cache architecture reduces energy-delay by 62% with minimal impact on performance.

716 citations