scispace - formally typeset
Search or ask a question
Author

Ibrahim Tekedereli

Bio: Ibrahim Tekedereli is an academic researcher from University of Texas MD Anderson Cancer Center. The author has contributed to research in topics: Autophagy & Doxorubicin. The author has an hindex of 10, co-authored 14 publications receiving 1329 citations. Previous affiliations of Ibrahim Tekedereli include University of Texas Health Science Center at Houston.

Papers
More filters
Journal ArticleDOI
TL;DR: Findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplasticThrombocytosis, which fuels tumor growth.
Abstract: From the Departments of Gynecologic Oncology and Reproductive Medicine (R.L.S., A.M.N., H.D.H., J.B.-M., W.H., H.G., K.M., M.M.K.S., E.R.K., A.K.S.), Cancer Biology (R.R., G.L.-B., A.K.S.), Experimental Therapeutics (G.N.A.-P., I.T., B.O., G.L.-B.), Hematology and Oncology (C.V.P.), Pathology (M.T.D.), Benign Hematology (H.G.V., V.A.-K.), Biostatistics (D.U.), and Leukemia (F.G.), and the Center for RNA Interference and Non-Coding RNA (H.D.H., G.L.-B.,

643 citations

Journal ArticleDOI
TL;DR: The data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of Autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.
Abstract: Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles. While autophagy has become one of the most attractive topics in cancer research, the current autophagy literature is often viewed as confusing, because of its association with apparently contradictory roles, such as survival and cell death. Autophagy can serve as a tumor suppressor, as a partial reduction in autophagic capacity or defective autophagy (e.g., heterozygous knockdown BECN1 (+/-) in mice) provides an oncogenic stimulus, causing malignant transformation and spontaneous tumors. In addition, autophagy seems to function as a protective cell survival mechanism against environmental and cellular stress (e.g., nutrient deprivation, hypoxia and therapeutic stress) and causes resistance to antineoplastic therapies. Recent studies have demonstrated that the inhibition of autophagy in cancer cells may be therapeutically beneficial in some circumstances, as it can sensitize cancer cells to different therapies, including DNA-damaging agents, antihormone therapies (e.g., tamoxifen), and radiation therapy. This supports the hypothesis that inhibiting autophagy can negatively influence cancer cell survival and increase cell death when combined with anticancer agents, providing a therapeutic advantage against cancer. On the other hand, the induction of autophagy by the inhibition of anti-autophagic proteins, such as Bcl-2, PKCdelta, and tissue transglutaminase 2 (TG2), may lead to autophagic cell death in some apoptosis-resistant cancers (i.e., breast and pancreatic cancers), indicating that the induction of autophagy alone may also be used as a potential therapy. Overall, the data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.

411 citations

Journal ArticleDOI
20 Jul 2012-PLOS ONE
TL;DR: The notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer is supported.
Abstract: Eukaryotic elongation factor 2 kinase (eEF-2K), through its phosphorylation of elongation factor 2 (eEF2), provides a mechanism by which cells can control the rate of the elongation phase of protein synthesis The activity of eEF-2K is increased in rapidly proliferating malignant cells, is inhibited during mitosis, and may contribute to the promotion of autophagy in response to anti-cancer therapies The purpose of this study was to examine the therapeutic potential of targeting eEF-2K in breast cancer tumors Through the systemic administration of liposomal eEF-2K siRNA (twice a week, iv 150 µg/kg), the expression of eEF-2K was down-regulated in vivo in an orthotopic xenograft mouse model of a highly aggressive triple negative MDA-MB-231 tumor This targeting resulted in a substantial decrease in eEF2 phosphorylation in the tumors, and led to the inhibition of tumor growth, the induction of apoptosis and the sensitization of tumors to the chemotherapy agent doxorubicin eEF-2K down-modulation in vitro resulted in a decrease in the expression of c-Myc and cyclin D1 with a concomitant increase in the expression of p27Kip1 A decrease in the basal activity of c-Src (phospho-Tyr-416), focal adhesion kinase (phospho-Tyr-397), and Akt (phospho-Ser-473) was also detected following eEF-2K down-regulation in MDA-MB-231 cells, as determined by Western blotting Where tested, similar results were seen in ER-positive MCF-7 cells These effects were also accompanied by a decrease in the observed invasive phenotype of the MDA-MB-231 cells These data support the notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer

97 citations

Journal ArticleDOI
TL;DR: The data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(−) and ER(+) breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl -2 by siRNA is a viable approach in breast cancers.
Abstract: Bcl-2 is overexpressed in about a half of human cancers and 50–70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA) offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL)-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous) twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(−)) MDA-MB-231 and ER-positive (+) MCF7 breast tumors in orthotopic xenograft models (P < 0.05). A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05). NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(−) and ER(+) breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers.

79 citations

Journal ArticleDOI
TL;DR: It is shown that proteins encoded by two androgen-regulated genes, kallikrein related peptidase 4 (KLK4) and promyelocytic leukemia zinc finger (PLZF), integrate optimal functioning of AR and mTOR signaling in PCa cells, which may be a viable target for therapy.
Abstract: The androgen receptor (AR) and the phosphoinositide 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) signaling are two of the major proliferative pathways in a number of tissues and are the main therapeutic targets in various disorders, including prostate cancer (PCa). Previous work has shown that there is reciprocal feedback regulation of PI3K and AR signaling in PCa, suggesting that cotargeting both pathways may enhance therapeutic efficacy. Here we show that proteins encoded by two androgen-regulated genes, kallikrein related peptidase 4 (KLK4) and promyelocytic leukemia zinc finger (PLZF), integrate optimal functioning of AR and mTOR signaling in PCa cells. KLK4 interacts with PLZF and decreases its stability. PLZF in turn interacts with AR and inhibits its function as a transcription factor. PLZF also activates expression of regulated in development and DNA damage responses 1, an inhibitor of mTORC1. Thus, a unique molecular switch is generated that regulates both AR and PI3K signaling. Consistently, KLK4 knockdown results in a significant decline in PCa cell proliferation in vitro and in vivo, decreases anchorage-independent growth, induces apoptosis, and dramatically sensitizes PCa cells to apoptosis-inducing agents. Furthermore, in vivo nanoliposomal KLK4 siRNA delivery in mice bearing PCa tumors results in profound remission. These results demonstrate that the activities of AR and mTOR pathways are maintained by KLK4, which may thus be a viable target for therapy.

58 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
16 Dec 2011-Science
TL;DR: It is demonstrated that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when Autophagy is disabled.
Abstract: Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.

1,139 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: This review focuses on the serine/threonine protein kinases AMP-activated protein kinase, mammalian target of rapamycin (mTOR), and unc-51-like kinase 1/2 (Ulk1/2), three interconnected major junctions within the autophagy regulating signaling network.
Abstract: Living cells are adaptive self-sustaining systems. They strictly depend on the sufficient supply of oxygen, energy, and nutrients from the outside in order to sustain their internal organization. However, as autonomous entities they are able to monitor and appropriately adapt to any critical fluctuation in their environment. In the case of insufficient external nutrient supply or augmented energy demands, cells start to extensively digest their own interior. This process, known as macroautophagy, comprises the transport of cytosolic portions and entire organelles to the lysosomal compartment via specific double-membrane vesicles, called autophagosomes. Although extensively upregulated under nutrient restriction, a low level of basal autophagy is likewise crucial in order to sustain the cellular homeostasis. On the other hand, cells have to avoid excessive and enduring self-digestion. The delicate balance between external energy and nutrient supply and internal production and consumption is a demanding task. The complex protein network that senses and precisely reacts to environmental changes is thus mainly regulated by rapid and reversible posttranslational modifications such as phosphorylation. This review focuses on the serine/threonine protein kinases AMP-activated protein kinase, mammalian target of rapamycin (mTOR), and unc-51-like kinase 1/2 (Ulk1/2), three interconnected major junctions within the autophagy regulating signaling network.

1,109 citations