scispace - formally typeset
Search or ask a question
Author

Ibrahima Oumar

Bio: Ibrahima Oumar is an academic researcher from Institut de recherche pour le développement. The author has contributed to research in topics: Domestication & Pennisetum. The author has an hindex of 1, co-authored 1 publications receiving 123 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by the data set and the phylogenetic relationship among accessions not showing introgression is analyzed.
Abstract: During the last 12,000 years, different cultures around the world have domesticated cereal crops. Several studies investigated the evolutionary history and domestication of cereals such as wheat in the Middle East, rice in Asia or maize in America. The domestication process in Africa has led to the emergence of important cereal crops like pearl millet in Sahelian Africa. In this study, we used 27 microsatellite loci to analyze 84 wild accessions and 355 cultivated accessions originating from the whole pearl millet distribution area in Africa and Asia. We found significantly higher diversity in the wild pearl millet group. The cultivated pearl millet sample possessed 81% of the alleles and 83% of the genetic diversity of the wild pearl millet sample. Using Bayesian approaches, we identified intermediate genotypes between the cultivated and wild groups. We then analyzed the phylogenetic relationship among accessions not showing introgression and found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by our data set.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that the evolution of domesticated apples occurred over a long time period and involved more than one wild species, supporting the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication.
Abstract: The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species.

333 citations

Journal ArticleDOI
TL;DR: This work resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication, and establishes marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance.
Abstract: Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ~1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.

285 citations

Journal ArticleDOI
TL;DR: The history of domesticated grasses is reviewed and how domestication affected their phenotypic and genomic diversity is reviewed, and the role of mating systems in the domestication process is revisited.
Abstract: Crop grasses were among the first plants to be domesticated c. 12,000 yr ago, and they still represent the main staple crops for humans. During domestication, as did many other crops, grasses went through dramatic genetic and phenotypic changes. The recent massive increase in genomic data has provided new tools to investigate the genetic basis and consequences of domestication. Beyond the genetics of domestication, many aspects of grass biology, including their phylogeny and developmental biology, are also increasingly well studied, offering a unique opportunity to analyse the domestication process in a comparative way. Taking such a comparative point of view, we review the history of domesticated grasses and how domestication affected their phenotypic and genomic diversity. Considering recent theoretical developments and the accumulation of genetic data, we revisit more specifically the role of mating systems in the domestication process. We close by suggesting future directions for the study of domestication in grasses.

200 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report new evidence from the Lower Tilemsi Valley in northeastern Mali, which constitutes the earliest archaeobotanical evidence for domesticated pearl millet (Pennisetum glaucum), predating other finds from Africa or India by several centuries.

200 citations

Journal ArticleDOI
TL;DR: Genetic analyses of domesticated soybean and its wild progenitor Glycine soja indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja, and limited evidence of admixture was discovered between these two species.
Abstract: Summary • The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. • In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. • The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei’s gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. • G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.

186 citations