scispace - formally typeset
Search or ask a question
Author

Igor A. Sidorov

Bio: Igor A. Sidorov is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Monoclonal antibody & Antibody. The author has an hindex of 26, co-authored 76 publications receiving 3457 citations. Previous affiliations of Igor A. Sidorov include Russian Academy & Russian Academy of Sciences.


Papers
More filters
Posted ContentDOI
11 Feb 2020-bioRxiv
TL;DR: The Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses assessed the novelty of the human pathogen tentatively named 2019-nCoV and formally recognizes this virus as a sister to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Abstract: The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

1,057 citations

Journal ArticleDOI
TL;DR: The sensitivity of the two viruses to three established inhibitors of coronavirus replication is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha.
Abstract: The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays

445 citations

Journal ArticleDOI
TL;DR: Two human monoclonal antibodies exhibit cross-reactivity against isolates from the two SARS outbreaks and palm civets and could have potential applications for diagnosis, prophylaxis, and treatment of SARS-CoV infections.
Abstract: The severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide epidemic in late 2002/early 2003 and a second outbreak in the winter of 2003/2004 by an independent animal-to-human transmission. The GD03 strain, which was isolated from an index patient of the second outbreak, was reported to resist neutralization by the human monoclonal antibodies (hmAbs) 80R and S3.1, which can potently neutralize isolates from the first outbreak. Here we report that two hmAbs, m396 and S230.15, potently neutralized GD03 and representative isolates from the first SARS outbreak (Urbani, Tor2) and from palm civets (SZ3, SZ16). These antibodies also protected mice challenged with the Urbani or recombinant viruses bearing the GD03 and SZ16 spike (S) glycoproteins. Both antibodies competed with the SARS-CoV receptor, ACE2, for binding to the receptor-binding domain (RBD), suggesting a mechanism of neutralization that involves interference with the SARS-CoV–ACE2 interaction. Two putative hot-spot residues in the RBD (Ile-489 and Tyr-491) were identified within the SARS-CoV spike that likely contribute to most of the m396-binding energy. Residues Ile-489 and Tyr-491 are highly conserved within the SARS-CoV spike, indicating a possible mechanism of the m396 cross-reactivity. Sequence analysis and mutagenesis data show that m396 might neutralize all zoonotic and epidemic SARS-CoV isolates with known sequences, except strains derived from bats. These antibodies exhibit cross-reactivity against isolates from the two SARS outbreaks and palm civets and could have potential applications for diagnosis, prophylaxis, and treatment of SARS-CoV infections.

286 citations

Journal ArticleDOI
TL;DR: It is demonstrated that HIV does not impair CD4 T cell production but does increase CD4 and CD8 lymphocyte proliferation and death by inducing entry into a rapidly proliferating subpopulation of cells.
Abstract: We examined the effects of human immunodeficiency virus infection on the turnover of CD4 and CD8 T lymphocytes in 17 HIV-infected patients by 30 min in vivo pulse labeling with bromodeoxyuridine (BrdU). The percentage of labeled CD4 and CD8 T lymphocytes was initially higher in lymph nodes than in blood. Labeled cells equilibrated between the two compartments within 24 h. Based on mathematical modeling of the dynamics of BrdU-labeled cells in the blood, we identified rapidly and slowly proliferating subpopulations of CD4 and CD8 T lymphocytes. The percentage, but not the decay rate, of labeled CD4 or CD8 cells in the rapidly proliferating pool correlated significantly with plasma HIV RNA levels for both CD4 (r = 0.77, P < 0.001) and CD8 (r = 0.81, P < 0.001) T cells. In six patients there was a geometric mean decrease of greater than 2 logs in HIV levels within 2 to 6 mo after the initiation of highly active antiretroviral therapy; this was associated with a significant decrease in the percentage (but not the decay rate) of labeled cells in the rapidly proliferating pool for both CD4 (P = 0.03) and CD8 (P < 0.001) T lymphocytes. Neither plasma viral levels nor therapy had an effect on the decay rate constants or the percentage of labeled cells in the slowly proliferating pool. Monocyte production was inversely related to viral load (r = -0.56, P = 0.003) and increased with therapy (P = 0.01). These findings demonstrate that HIV does not impair CD4 T cell production but does increase CD4 and CD8 lymphocyte proliferation and death by inducing entry into a rapidly proliferating subpopulation of cells.

233 citations

Journal ArticleDOI
TL;DR: Of the five broadly cross-reactive HIV-1-neutralizing human monoclonal antibodies known to date, X5 is the only one that exhibits increased binding to gp120 complexed with receptors, and these findings suggest that X5 could possibly be used as entry inhibitor alone or in combination with other antiretroviral drugs for the treatment of HIV- 1-infected individuals.
Abstract: HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor, typically CCR5. Here we provide evidence that purified gp120JR-FL–CD4–CCR5 complexes exhibit an epitope recognized by a Fab (X5) obtained by selection of a phage display library from a seropositive donor with a relatively high broadly neutralizing serum antibody titer against an immobilized form of the trimolecular complex. X5 bound with high (nM) affinity to a variety of Envs, including primary isolates from different clades and Envs with deleted variable loops (V1, -2, -3). Its binding was significantly increased by CD4 and slightly enhanced by CCR5. X5 inhibited infection of peripheral blood mononuclear cells by a selection of representative HIV-1 primary isolates from clades A, B, C, D, E, F, and G with an efficiency comparable to that of the broadly neutralizing antibody IgG1 b12. Furthermore, X5 inhibited cell fusion mediated by Envs from R5, X4, and R5X4 viruses. Of the five broadly cross-reactive HIV-1-neutralizing human monoclonal antibodies known to date, X5 is the only one that exhibits increased binding to gp120 complexed with receptors. These findings suggest that X5 could possibly be used as entry inhibitor alone or in combination with other antiretroviral drugs for the treatment of HIV-1-infected individuals, provide evidence for the existence of conserved receptor-inducible gp120 epitopes that can serve as targets for potent broadly cross-reactive neutralizing antibodies in HIV-1-infected patients, and have important conceptual and practical implications for the development of vaccines and inhibitors.

232 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.

20,189 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Three methods of performing normalization at the probe intensity level are presented: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure and the simplest and quickest complete data method is found to perform favorably.
Abstract: Motivation: When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not perform well in these situations. Results: We present three methods of performing normalization at the probe intensity level. These methods are called complete data methods because they make use of data from all arrays in an experiment to form the normalizing relation. These algorithms are compared to two methods that make use of a baseline array: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure. Two publicly available datasets are used to carry out the comparisons. The simplest and quickest complete data method is found to perform favorably. Availabilty: Software implementing all three of the complete data normalization methods is available as part of the R package Affy, which is a part of the Bioconductor project http://www.bioconductor.org. Contact: bolstad@stat.berkeley.edu Supplementary information: Additional figures may be found at http://www.stat.berkeley.edu/∼bolstad/normalize/ index.html

8,324 citations

Journal ArticleDOI
TL;DR: The independent zoonotic transmission of SARS-CoV and SARS -CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance.
Abstract: The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

5,527 citations

Journal ArticleDOI
TL;DR: Among patients with pneumonia caused by SARS-CoV-2 (novel coronavirus pneumonia or Wuhan pneumonia), fever was the most common symptom, followed by cough, and bilateral lung involvement with ground-glass opacity was themost common finding from computed tomography images of the chest.

4,318 citations