scispace - formally typeset
Search or ask a question
Author

Igor Gilitschenski

Bio: Igor Gilitschenski is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Computer science & Kalman filter. The author has an hindex of 23, co-authored 94 publications receiving 1626 citations. Previous affiliations of Igor Gilitschenski include ETH Zurich & École Polytechnique Fédérale de Lausanne.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
31 Jan 2018
TL;DR: Maplab as discussed by the authors is an open, research-oriented visual-inertial mapping framework for processing and manipulating multisession maps, written in C++, which can be seen as a ready-to-use visual-intrusive mapping and localization system.
Abstract: Robust and accurate visual-inertial estimation is crucial to many of today's challenges in robotics. Being able to localize against a prior map and obtain accurate and drift-free pose estimates can push the applicability of such systems even further. Most of the currently available solutions, however, either focus on a single session use case, lack localization capabilities, or do not provide an end-to-end pipeline. We believe that only a complete system, combining state-of-the-art algorithms, scalable multisession mapping tools, and a flexible user interface, can become an efficient research platform. We, therefore, present maplab, an open, research-oriented visual-inertial mapping framework for processing and manipulating multisession maps, written in C++. On the one hand, maplab can be seen as a ready-to-use visual-inertial mapping and localization system. On the other hand, maplab provides the research community with a collection of multisession mapping tools that include map merging, visual-inertial batch optimization, and loop closure. Furthermore, it includes an online frontend that can create visual-inertial maps and also track a global drift-free pose within a localization map. In this letter, we present the system architecture, five use cases, and evaluations of the system on public datasets. The source code of maplab is freely available for the benefit of the robotics research community.

172 citations

Journal ArticleDOI
TL;DR: Voliro is presented, a novel aerial platform that combines the advantages of existing multirotor systems with the agility of vehicles having omniorientational controllability, so that Voliro can fly in any direction while maintaining an arbitrary orientation.
Abstract: Extending the maneuverability of multirotors promises to yield a considerable increase in their scope of applications, such as carrying out more challenging inspection tasks and generating complex, uninterrupted movements of an attached camera. In this article, we address the promise of multirotor maneuverability by presenting Voliro, a novel aerial platform that combines the advantages of existing multirotor systems with the agility of vehicles having omniorientational controllability. In other words, Voliro can fly in any direction while maintaining an arbitrary orientation.

168 citations

Journal ArticleDOI
13 Jan 2020
TL;DR: The ability of policies learned within this simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training is demonstrated.
Abstract: In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse rewards. By leveraging real, human-collected trajectories through an environment, we render novel training data that allows virtual agents to drive along a continuum of new local trajectories consistent with the road appearance and semantics, each with a different view of the scene. We demonstrate the ability of policies learned within our simulator to generalize to and navigate in previously unseen real-world roads, without access to any human control labels during training. Our results validate the learned policy onboard a full-scale autonomous vehicle, including in previously un-encountered scenarios, such as new roads and novel, complex, near-crash situations. Our methods are scalable, leverage reinforcement learning, and apply broadly to situations requiring effective perception and robust operation in the physical world.

136 citations

Proceedings ArticleDOI
01 Nov 2016
TL;DR: This paper focuses on analyzing and predicting movements of pedestrians approaching crosswalks, a very crucial pedestrian-vehicle interaction in urban scenarios, and analyzes the effectiveness of dense and Long-Short-Term-Memory networks.
Abstract: In the context of future urban automated driving many important problems remain unsolved. A critical one is the analysis and prediction of pedestrian movements around urban roads. Especially the analysis of non-critical situations has not received much attention in the past. This paper focuses on analyzing and predicting movements of pedestrians approaching crosswalks, a very crucial pedestrian-vehicle interaction in urban scenarios. In our previous work, we analyzed the performance of a data-driven Support Vector Machine-based architecture, and the relevance of specific features to infer pedestrian crossing intentions. In this paper, we will use our previous results as baseline to compare against an architecture based on neural networks for time-series classification. In particular we analyze the effectiveness of dense and Long-Short-Term-Memory networks. Furthermore, we will be looking into enhancing our feature vectors by adding LiDAR based images to the classification process. Additionally the evaluation provides an estimate for the temporal prediction horizon. The approaches presented are validated with real world trajectories recorded in Germany. Our results show an average accuracy improvement of 10–20% with respect to our previous Support Vector Machine-based approach.

88 citations

Journal ArticleDOI
TL;DR: Maplab as discussed by the authors is an open, research-oriented visual-inertial mapping framework for processing and manipulating multi-session maps, written in C++, which includes a collection of multisession mapping tools that include map merging, visual inertial batch optimization, and loop closure.
Abstract: Robust and accurate visual-inertial estimation is crucial to many of today's challenges in robotics. Being able to localize against a prior map and obtain accurate and driftfree pose estimates can push the applicability of such systems even further. Most of the currently available solutions, however, either focus on a single session use-case, lack localization capabilities or an end-to-end pipeline. We believe that only a complete system, combining state-of-the-art algorithms, scalable multi-session mapping tools, and a flexible user interface, can become an efficient research platform. We therefore present maplab, an open, research-oriented visual-inertial mapping framework for processing and manipulating multi-session maps, written in C++. On the one hand, maplab can be seen as a ready-to-use visual-inertial mapping and localization system. On the other hand, maplab provides the research community with a collection of multisession mapping tools that include map merging, visual-inertial batch optimization, and loop closure. Furthermore, it includes an online frontend that can create visual-inertial maps and also track a global drift-free pose within a localization map. In this paper, we present the system architecture, five use-cases, and evaluations of the system on public datasets. The source code of maplab is freely available for the benefit of the robotics research community.

83 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

01 Jan 2016
TL;DR: The mathematical methods of statistics is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading mathematical methods of statistics. Maybe you have knowledge that, people have search numerous times for their favorite novels like this mathematical methods of statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious virus inside their laptop. mathematical methods of statistics is available in our book collection an online access to it is set as public so you can download it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the mathematical methods of statistics is universally compatible with any devices to read.

878 citations

Book ChapterDOI
20 Dec 2013

780 citations