scispace - formally typeset
Search or ask a question
Author

Igor Kononenko

Bio: Igor Kononenko is an academic researcher from University of Ljubljana. The author has contributed to research in topics: Reliability (statistics) & Decision tree. The author has an hindex of 33, co-authored 128 publications receiving 12595 citations.


Papers
More filters
Book ChapterDOI
01 May 1994
TL;DR: In the context of machine learning from examples this paper deals with the problem of estimating the quality of attributes with and without dependencies among them and is analysed and extended to deal with noisy, incomplete, and multi-class data sets.
Abstract: In the context of machine learning from examples this paper deals with the problem of estimating the quality of attributes with and without dependencies among them. Kira and Rendell (1992a,b) developed an algorithm called RELIEF, which was shown to be very efficient in estimating attributes. Original RELIEF can deal with discrete and continuous attributes and is limited to only two-class problems. In this paper RELIEF is analysed and extended to deal with noisy, incomplete, and multi-class data sets. The extensions are verified on various artificial and one well known real-world problem.

2,849 citations

Journal ArticleDOI
TL;DR: How and why Relief algorithms work, their theoretical and practical properties, their parameters, what kind of dependencies they detect, how do they scale up to large number of examples and features, how to sample data for them, how robust are they regarding the noise, how irrelevant and redundant attributes influence their output and how different metrics influences them.
Abstract: Relief algorithms are general and successful attribute estimators. They are able to detect conditional dependencies between attributes and provide a unified view on the attribute estimation in regression and classification. In addition, their quality estimates have a natural interpretation. While they have commonly been viewed as feature subset selection methods that are applied in prepossessing step before a model is learned, they have actually been used successfully in a variety of settings, e.g., to select splits or to guide constructive induction in the building phase of decision or regression tree learning, as the attribute weighting method and also in the inductive logic programming. A broad spectrum of successful uses calls for especially careful investigation of various features Relief algorithms have. In this paper we theoretically and empirically investigate and discuss how and why they work, their theoretical and practical properties, their parameters, what kind of dependencies they detect, how do they scale up to large number of examples and features, how to sample data for them, how robust are they regarding the noise, how irrelevant and redundant attributes influence their output and how different metrics influences them.

2,651 citations

Journal ArticleDOI
TL;DR: An overview of the development of intelligent data analysis in medicine from a machine learning perspective: a historical view, a state-of-the-art view, and a view on some future trends in this subfield of applied artificial intelligence.

1,324 citations

Journal ArticleDOI
TL;DR: A sensitivity analysis-based method for explaining prediction models that can be applied to any type of classification or regression model, and which is equivalent to commonly used additive model-specific methods when explaining an additive model.
Abstract: We present a sensitivity analysis-based method for explaining prediction models that can be applied to any type of classification or regression model. Its advantage over existing general methods is that all subsets of input features are perturbed, so interactions and redundancies between features are taken into account. Furthermore, when explaining an additive model, the method is equivalent to commonly used additive model-specific methods. We illustrate the method's usefulness with examples from artificial and real-world data sets and an empirical analysis of running times. Results from a controlled experiment with 122 participants suggest that the method's explanations improved the participants' understanding of the model.

1,024 citations

Journal ArticleDOI
TL;DR: This work reimplemented Assistant, a system for top down induction of decision trees, using RELIEFF, an extension of RELIEF, as an estimator of attributes at each selection step for heuristic guidance of inductive learning algorithms.
Abstract: Current inductive machine learning algorithms typically use greedy search with limited lookahead. This prevents them to detect significant conditional dependencies between the attributes that describe training objects. Instead of myopic impurity functions and lookahead, we propose to use RELIEFF, an extension of RELIEF developed by Kira and Rendell l10, 11r, for heuristic guidance of inductive learning algorithms. We have reimplemented Assistant, a system for top down induction of decision trees, using RELIEFF as an estimator of attributes at each selection step. The algorithm is tested on several artificial and several real world problems and the results are compared with some other well known machine learning algorithms. Excellent results on artificial data sets and two real world problems show the advantage of the presented approach to inductive learning.

722 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail, is described, and a reported shortcoming of the basic algorithm is discussed.
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.

17,177 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations