Author

# Igor Podlubny

Other affiliations: Slovak Academy of Sciences

Bio: Igor Podlubny is an academic researcher from Technical University of Košice. The author has contributed to research in topics: Fractional calculus & Differential equation. The author has an hindex of 33, co-authored 96 publications receiving 9821 citations. Previous affiliations of Igor Podlubny include Slovak Academy of Sciences.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, a fractional-order PI/sup/spl lambda/D/sup /spl mu/controller with fractionalorder integrator and fractional order differentiator is proposed.

Abstract: Dynamic systems of an arbitrary real order (fractional-order systems) are considered. The concept of a fractional-order PI/sup /spl lambda//D/sup /spl mu//-controller, involving fractional-order integrator and fractional-order differentiator, is proposed. The Laplace transform formula for a new function of the Mittag-Leffler-type made it possible to obtain explicit analytical expressions for the unit-step and unit-impulse response of a linear fractional-order system with fractional-order controller for both open- and closed-loops. An example demonstrating the use of the obtained formulas and the advantages of the proposed PI/sup /spl lambda//D/sup /spl mu//-controllers is given.

2,479 citations

••

TL;DR: The definition of Mittag-Leffler stability is proposed and the fractional Lyapunov direct method is introduced and the application of Riemann-Liouville fractional order systems is extended by using Caputo fractional orders systems.

1,291 citations

••

TL;DR: The decaying speed of the Lyapunov function can be more generally characterized which include the exponential stability and power-law stability as special cases.

Abstract: Stability of fractional-order nonlinear dynamic systems is studied using Lyapunov direct method with the introductions of Mittag-Leffler stability and generalized Mittag-Leffler stability notions. With the definitions of Mittag-Leffler stability and generalized Mittag-Leffler stability proposed, the decaying speed of the Lyapunov function can be more generally characterized which include the exponential stability and power-law stability as special cases. Finally, four worked out examples are provided to illustrate the concepts.

1,200 citations

•

TL;DR: In this paper, a solution to the more than 300-year old problem of geometric and physical interpretation of fractional integration and dieren tiation is suggested for the Riemann-Liouville fractional Integration and Dieren Tiation, the Caputo fractional dierentiation, and the Riesz potential.

Abstract: A solution to the more than 300-years old problem of geometric and physical interpretation of fractional integration and dieren tiation (i.e., integration and dieren tiation of an arbitrary real order) is suggested for the Riemann-Liouville fractional integration and dieren tiation, the Caputo fractional dieren tiation, the Riesz potential, and the Feller potential. It is also generalized for giving a new geometric and physical interpretation of more general convolution integrals of the Volterra type. Besides this, a new physical interpretation is suggested for the Stieltjes integral.

905 citations

••

TL;DR: In this article, an approach to the design of analogue circuits, implementing fractional-order controllers, is presented, based on the use of continued fraction expansions; in the case of negative coefficients in a continued fractionexpansion, negative impedance converters is proposed.

Abstract: An approach to the design of analogue circuits, implementingfractional-order controllers, is presented. The suggestedapproach is based on the use of continued fraction expansions;in the case of negative coefficients in a continued fractionexpansion, the use of negative impedance converters is proposed.Several possible methods for obtaining suitable rational appromixationsand continued fraction expansions are discussed. An exampleof realization of a fractional-order Iλ controlleris presented and illustrated by obtained measurements.The suggested approach can be used for the control of veryfast processes, where the use of digital controllers isdifficult or impossible.

633 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

••

01 Jan 20153,828 citations

••

TL;DR: In this paper, the authors discuss existence, uniqueness, and structural stability of solutions of nonlinear differential equations of fractional order, and investigate the dependence of the solution on the order of the differential equation and on the initial condition.

3,047 citations

••

TL;DR: In this article, a fractional-order PI/sup/spl lambda/D/sup /spl mu/controller with fractionalorder integrator and fractional order differentiator is proposed.

Abstract: Dynamic systems of an arbitrary real order (fractional-order systems) are considered. The concept of a fractional-order PI/sup /spl lambda//D/sup /spl mu//-controller, involving fractional-order integrator and fractional-order differentiator, is proposed. The Laplace transform formula for a new function of the Mittag-Leffler-type made it possible to obtain explicit analytical expressions for the unit-step and unit-impulse response of a linear fractional-order system with fractional-order controller for both open- and closed-loops. An example demonstrating the use of the obtained formulas and the advantages of the proposed PI/sup /spl lambda//D/sup /spl mu//-controllers is given.

2,479 citations

01 Jan 2015

TL;DR: In this article, the authors present a new definition of fractional derivative with a smooth kernel, which takes on two different representations for the temporal and spatial variable, for which it is more convenient to work with the Fourier transform.

Abstract: In the paper, we present a new definition of fractional deriva tive with a smooth kernel which takes on two different representations for the temporal and spatial variable. The first works on the time variables; thus it is suitable to use th e Laplace transform. The second definition is related to the spatial va riables, by a non-local fractional derivative, for which it is more convenient to work with the Fourier transform. The interest for this new approach with a regular kernel was born from the prospect that there is a class of non-local systems, which have the ability to descri be the material heterogeneities and the fluctuations of diff erent scales, which cannot be well described by classical local theories or by fractional models with singular kernel.

1,972 citations