scispace - formally typeset
Search or ask a question
Author

Igor Shabalov

Bio: Igor Shabalov is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Genomics & Genome. The author has an hindex of 4, co-authored 4 publications receiving 1909 citations. Previous affiliations of Igor Shabalov include Joint Genome Institute & United States Department of Energy.

Papers
More filters
Journal ArticleDOI
TL;DR: MycoCosm is a fungal genomics portal developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other 'omics' data by providing interactive web-based tools.
Abstract: MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other 'omics' data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources.

1,037 citations

Journal ArticleDOI
TL;DR: Major updates of the Genome Portal in the past 2 years are described with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.
Abstract: The US Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization The JGI Genome Portal (http://genomejgidoegov) provides unified access to all JGI genomic databases and analytical tools The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes Here we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI

724 citations

Journal ArticleDOI
TL;DR: The general organization of the JGI Genome Portal is described and the most recent addition, MycoCosm, a new integrated fungal genomics resource is described.
Abstract: The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal (http://genome.jgi.doe.gov) provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. We describe here the general organization of the Genome Portal and the most recent addition, MycoCosm (http://jgi.doe.gov/fungi), a new integrated fungal genomics resource.

526 citations

Journal ArticleDOI
TL;DR: PhycoCosm provides integration of genome sequence and annotation for >100 algal genomes with available multi-omics data and interactive web-based tools to enable algal research in bioenergy and the environment, encouraging community engagement and data exchange, and fostering new sequencing projects that will further these research goals.
Abstract: Algae are a diverse, polyphyletic group of photosynthetic eukaryotes spanning nearly all eukaryotic lineages of life and collectively responsible for ∼50% of photosynthesis on Earth. Sequenced algal genomes, critical to understanding their complex biology, are growing in number and require efficient tools for analysis. PhycoCosm (https://phycocosm.jgi.doe.gov) is an algal multi-omics portal, developed by the US Department of Energy Joint Genome Institute to support analysis and distribution of algal genome sequences and other 'omics' data. PhycoCosm provides integration of genome sequence and annotation for >100 algal genomes with available multi-omics data and interactive web-based tools to enable algal research in bioenergy and the environment, encouraging community engagement and data exchange, and fostering new sequencing projects that will further these research goals.

74 citations


Cited by
More filters
Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group, and eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees.
Abstract: eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.

1,580 citations

Journal ArticleDOI
TL;DR: Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities, and network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks.
Abstract: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

1,223 citations

Journal ArticleDOI
TL;DR: MycoCosm is a fungal genomics portal developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other 'omics' data by providing interactive web-based tools.
Abstract: MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other 'omics' data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources.

1,037 citations

Journal ArticleDOI
TL;DR: Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of myCorrhiza-induced genes.
Abstract: To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.

799 citations