scispace - formally typeset
Search or ask a question
Author

Ilkka M. Helander

Bio: Ilkka M. Helander is an academic researcher from University of Helsinki. The author has contributed to research in topics: Lipid A & Bacterial outer membrane. The author has an hindex of 30, co-authored 57 publications receiving 5540 citations. Previous affiliations of Ilkka M. Helander include VTT Technical Research Centre of Finland.


Papers
More filters
Journal ArticleDOI
TL;DR: Of the tested components, carvacrol and thymol decreased the intracellular ATP pool of E. coli and also inreased extracellular ATP, indicating disruptive action on the cytoplasmic membrane.
Abstract: Carvacrol, (+)-carvone, thymol, and trans-cinnamaldehyde were tested for their inhibitory activity against Escherichia coli O157:H7 and Salmonella typhimurium. In addition, their toxicity to Photobacterium leiognathi was determined, utilizing a bioluminescence assay. Their effects on the cell surface were investigated by measuring the uptake of 1-N-phenylnaphthylamine (NPN), by measuring their sensitization of bacterial suspensions toward detergents and lysozyme, and by analyzing material released from cells upon treatment by these agents. Carvacrol, thymol, and trans-cinnamaldehyde inhibited E. coli and S. typhimurium at 1-3 mM, whereas (+)-carvone was less inhibitory. trans-Cinnamaldehyde was the most inhibitory component toward P. leiognathi. Carvacrol and thymol disintegrated the outer membrane and released outer membrane-associated material from the cells to the external medium; such release by (+)-carvone or trans-cinnamaldehyde was negligible. Of the tested components, carvacrol and thymol decreased the intracellular ATP pool of E. coli and also inreased extracellular ATP, indicating disruptive action on the cytoplasmic membrane.

1,595 citations

Journal ArticleDOI
TL;DR: Lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.
Abstract: The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl2. Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.

941 citations

Journal ArticleDOI
TL;DR: The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus and Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins.
Abstract: Antimicrobial activity and mechanisms of phenolic extracts of 12 Nordic berries were studied against selected human pathogenic microbes. The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus. Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins. Cloudberry extract gave strong microbicidic effects on the basis of plate count with all studied strains. However, fluorescence staining of liquid cultures of virulent Salmonella showed viable cells not detectable by plate count adhering to cloudberry extract, whereas Staphylococcus aureus cells adhered to berry extracts were dead on the basis of their fluorescence and plate count. Phenolic extracts of cloudberry and raspberry disintegrated the outer membrane of examined Salmonella strains as indicated by 1-N-phenylnaphthylamine (NPN) uptake increase and analysis of liberation of [14C]galactose- lipopolysaccharide. Gallic acid effectively permeabilized the tested Salmonella strains, and significant increase in the NPN uptake was recorded. The stability of berry phenolics and their antimicrobial activity in berries stored frozen for a year were examined using Escherichia coli and nonvirulent Salmonella enterica sv. Typhimurium. The amount of phenolic compounds decreased in all berries, but their antimicrobial activity was not influenced accordingly. Cloudberry, in particular, showed constantly strong antimicrobial activity during the storage.

464 citations

Journal ArticleDOI
TL;DR: The results further support the conclusions from epidemiologic and experimental studies that the bacterial endotoxin is responsible for the acute reactions seen after exposure to many organic dusts, including that derived from cotton.
Abstract: In previous experiments, a good relationship was demonstrated between the amount of airborne bacterial endotoxin and acute reactions after exposure to organic dusts. In the present study, 77 naive subjects were exposed to isolated endotoxin (IE) or endotoxin attached to bacterial cells (CE). Both preparations were obtained from Enterobacter agglomerans, which is a major bacterial species in many organic dusts. The major physiologic effect caused was a dose-related decrease in transfer factor, as measured by carbon monoxide diffusion. Half of the subjects reported fever and about one-third a subjective feeling of chest tightness. The exposure also caused a dose-related but small decrease in FEV1. A slightly increased bronchial reactivity was demonstrated at 4 h after endotoxin exposure. The minute volume after CO2 exposure was marginally affected. The results further support the conclusions from epidemiologic and experimental studies that the bacterial endotoxin is responsible for the acute reactions seen after exposure to many organic dusts, including that derived from cotton.

269 citations

Journal ArticleDOI
TL;DR: It is suggested that the phosphorylation pattern and acylation in lipid A are responsible for the low biological activity of lipopolysaccharide.
Abstract: Lipopolysaccharide from the gastroduodenal pathogen Helicobacter pylori was tested for its ability to induce mitogenicity in mouse spleen cells, pyrogenicity in rabbits, and toxic lethality in galactosamine-sensitized mice. Compared with those for enterobacterial lipopolysaccharide, mitogenicity and pyrogenicity were a thousand-fold lower and lethal toxicity was 500-fold lower. We suggest that the phosphorylation pattern and acylation in lipid A are responsible for the low biological activity.

250 citations


Cited by
More filters
Journal ArticleDOI
Sara A. Burt1
TL;DR: In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1).

9,091 citations

Journal ArticleDOI
TL;DR: Findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.

6,174 citations

Journal ArticleDOI
TL;DR: This review summarizes the development in the field since the previous review and begins to understand how this bilayer of the outer membrane can retard the entry of lipophilic compounds, owing to increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopoly Saccharide structure is modified by environmental conditions.
Abstract: Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.

3,585 citations

Journal ArticleDOI
TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract: Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

3,077 citations

Journal ArticleDOI
TL;DR: The intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Abstract: Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.

2,687 citations