scispace - formally typeset
Search or ask a question
Author

Ilya Krivorotov

Other affiliations: University of California, Emory University, Cornell University  ...read more
Bio: Ilya Krivorotov is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Magnetization & Magnetoresistance. The author has an hindex of 54, co-authored 182 publications receiving 10386 citations. Previous affiliations of Ilya Krivorotov include University of California & Emory University.


Papers
More filters
Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: In this paper, the authors demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current.
Abstract: The recent discovery that a spin-polarized electrical current can apply a large torque to a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of manipulating magnetic-device elements without applying cumbersome magnetic fields. However, a central question remains unresolved: what type of magnetic motions can be generated by this torque? Theory predicts that spin transfer may be able to drive a nanomagnet into types of oscillatory magnetic modes not attainable with magnetic fields alone, but existing measurement techniques have provided only indirect evidence for dynamical states. The nature of the possible motions has not been determined. Here we demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current. We show that spin transfer can produce several different types of magnetic excitation. Although there is no mechanical motion, a simple magnetic-multilayer structure acts like a nanoscale motor; it converts energy from a d.c. electrical current into high-frequency magnetic rotations that might be applied in new devices including microwave sources and resonators.

1,869 citations

Journal ArticleDOI
TL;DR: This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces, identifying the most exciting new scientific results and pointing to promising future research directions.
Abstract: This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

758 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that a magnetic vortex, isolated within a nanoscale spin-valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized d.c. current.
Abstract: Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the magnetization dynamics of nanomagnets. A peculiar consequence of this spin torque, the ability to induce persistent oscillations in a nanomagnet by applying a d.c. current, has previously been reported only for spatially uniform nanomagnets. Here, we demonstrate that a quintessentially non-uniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin-valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized d.c. current. Comparison with micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz at ∼1.1 GHz, making these highly compact spin-torque vortex-oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.

593 citations

Journal ArticleDOI
14 Jan 2005-Science
TL;DR: Time-resolved studies of magnetic relaxation allow for the direct measurement of magnetic damping in a nanomagnet and prove that this damping can be controlled electrically using spin-polarized currents.
Abstract: We present time-resolved measurements of gigahertz-scale magnetic dynamics caused by torque from a spin-polarized current. By working in the time domain, we determined the motion of the magnetic moment throughout the process of spin-transfer-driven switching, and we measured turn-on times of steady-state precessional modes. Time-resolved studies of magnetic relaxation allow for the direct measurement of magnetic damping in a nanomagnet and prove that this damping can be controlled electrically using spin-polarized currents.

522 citations

Journal ArticleDOI
TL;DR: Studies of the resonance frequencies, amplitudes, linewidths, and line shapes as a function of microwave power, dc current, and magnetic field provide detailed new information about the exchange, damping, and spin-transfer torques that govern the dynamics in magnetic nanostructures.
Abstract: We demonstrate a technique that enables ferromagnetic resonance measurements of the normal modes for magnetic excitations in individual nanoscale ferromagnets, smaller in volume by more than a factor of 50 compared to individual ferromagnetic samples measured by other resonance techniques. Studies of the resonance frequencies, amplitudes, linewidths, and line shapes as a function of microwave power, dc current, and magnetic field provide detailed new information about the exchange, damping, and spin-transfer torques that govern the dynamics in magnetic nanostructures.

352 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
04 May 2012-Science
TL;DR: In this paper, a giant spin Hall effect (SHE) in β-tantalum was shown to generate spin currents intense enough to induce spin-torque switching of ferromagnets at room temperature.
Abstract: Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in β-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.

3,330 citations