scispace - formally typeset
Search or ask a question
Author

Imad Aad

Bio: Imad Aad is an academic researcher from Nokia. The author has contributed to research in topics: IEEE 802.11 & Wireless network. The author has an hindex of 28, co-authored 80 publications receiving 4394 citations. Previous affiliations of Imad Aad include NTT DoCoMo & French Institute for Research in Computer Science and Automation.


Papers
More filters
Proceedings ArticleDOI
22 Apr 2001
TL;DR: This work presents three service differentiation schemes for IEEE 802.11 based on scaling the contention window according to the priority of each flow or user, and simulates and analyzes the performance of each scheme with TCP and UDP flows.
Abstract: The IETF is currently working on service differentiation in the Internet. However, in wireless environments where bandwidth is scarce and channel conditions are variable, IP differentiated services are sub-optimal without lower layers' support. We present three service differentiation schemes for IEEE 802.11. The first one is based on scaling the contention window according to the priority of each flow or user. The second one assigns different inter-frame spacings to different users. Finally, the last one uses different maximum frame lengths for different users. We simulate and analyze the performance of each scheme with TCP and UDP flows.

629 citations

01 Jan 2012
TL;DR: An overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of related mobile data analysis methodologies, is presented.
Abstract: This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of related mobile data analysis methodologies. First we review the Lausanne Data Collection Campaign (LDCC) an initiative to collect unique, longitudinal smartphone data set for the basis of the MDC. Then, we introduce the Open and Dedicated Tracks of the MDC; describe the specific data sets used in each of them; and discuss some of the key aspects in order to generate privacy-respecting, challenging, and scientifically relevant mobile data resources for wider use of the research community. The concluding remarks will summarize the paper.

491 citations

Journal ArticleDOI
TL;DR: This paper proposes protocols, as components of a framework, for the identification and local containment of misbehaving or faulty nodes, and then for their eviction from the system, and shows that the distributed approach to contain nodes and contribute to their eviction is efficiently feasible and achieves a sufficient level of robustness.
Abstract: Vehicular networks (VNs) are emerging, among civilian applications, as a convincing instantiation of the mobile networking technology. However, security is a critical factor and a significant challenge to be met. Misbehaving or faulty network nodes have to be detected and prevented from disrupting network operation, a problem particularly hard to address in the life-critical VN environment. Existing networks rely mainly on node certificate revocation for attacker eviction, but the lack of an omnipresent infrastructure in VNs may unacceptably delay the retrieval of the most recent and relevant revocation information; this will especially be the case in the early deployment stages of such a highly volatile and large-scale system. In this paper, we address this specific problem. We propose protocols, as components of a framework, for the identification and local containment of misbehaving or faulty nodes, and then for their eviction from the system. We tailor our design to the VN characteristics and analyze our system. Our results show that the distributed approach to contain nodes and contribute to their eviction is efficiently feasible and achieves a sufficient level of robustness.

433 citations

Proceedings ArticleDOI
13 Mar 2005
TL;DR: A game-theoretic approach is used to investigate the problem of the selfish behavior of nodes in CSMA/CA networks, and a simple, localized and distributed protocol is developed that successfully guides multiple selfish nodes to a Pareto-optimal Nash equilibrium.
Abstract: CSMA/CA protocols rely on the random deferment of packet transmissions. Like most other protocols, CSMA/CA was designed with the assumption that the nodes would play by the rules. This can be dangerous, since the nodes themselves control their random deferment. Indeed, with the higher programmability of the network adapters, the temptation to tamper with the software or firmware is likely to grow; by doing so, a user could obtain a much larger share of the available bandwidth at the expense of other users. We use a game-theoretic approach to investigate the problem of the selfish behavior of nodes in CSMA/CA networks, specifically geared towards the most widely accepted protocol in this class of protocols, IEEE 802.11. We characterize two families of Nash equilibria in a single stage game, one of which always results in a network collapse. We argue that this result provides an incentive for cheaters to cooperate with each other. Explicit cooperation among nodes is clearly impractical. By applying the model of dynamic games borrowed from game theory, we derive the conditions for the stable and optimal functioning of a population of cheaters. We use this insight to develop a simple, localized and distributed protocol that successfully guides multiple selfish nodes to a Pareto-optimal Nash equilibrium.

348 citations

Proceedings ArticleDOI
26 Sep 2004
TL;DR: This paper design and study DoS attacks in order to assess the damage that difficult-to-detect attackers can cause, and quantifies via simulations and analytical modeling the scalability of doS attacks as a function of key performance parameters such as mobility, system size, node density, and counter-DoS strategy.
Abstract: Significant progress has been made towards making ad hoc networks secure and DoS resilient. However, little attention has been focused on quantifying DoS resilience: Do ad hoc networks have sufficiently redundant paths and counter-DoS mechanisms to make DoS attacks largely ineffective? Or are there attack and system factors that can lead to devastating effects? In this paper, we design and study DoS attacks in order to assess the damage that difficult-to-detect attackers can cause. The first attack we study, called the JellyFish attack, is targeted against closed-loop flows such as TCP; although protocol compliant, it has devastating effects. The second is the Black Hole attack, which has effects similar to the JellyFish, but on open-loop flows. We quantify via simulations and analytical modeling the scalability of DoS attacks as a function of key performance parameters such as mobility, system size, node density, and counter-DoS strategy. One perhaps surprising result is that such DoS attacks can increase the capacity of ad hoc networks, as they starve multi-hop flows and only allow one-hop communication, a capacity-maximizing, yet clearly undesirable situation.

311 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The definition, characteristics, and classification of big data along with some discussions on cloud computing are introduced, and research challenges are investigated, with focus on scalability, availability, data integrity, data transformation, data quality, data heterogeneity, privacy, legal and regulatory issues, and governance.

2,141 citations

Journal ArticleDOI
TL;DR: The definition of MEC, its advantages, architectures, and application areas are provided; where the security and privacy issues and related existing solutions are also discussed.
Abstract: Mobile edge computing (MEC) is an emergent architecture where cloud computing services are extended to the edge of networks leveraging mobile base stations. As a promising edge technology, it can be applied to mobile, wireless, and wireline scenarios, using software and hardware platforms, located at the network edge in the vicinity of end-users. MEC provides seamless integration of multiple application service providers and vendors toward mobile subscribers, enterprises, and other vertical segments. It is an important component in the 5G architecture which supports variety of innovative applications and services where ultralow latency is required. This paper is aimed to present a comprehensive survey of relevant research and technological developments in the area of MEC. It provides the definition of MEC, its advantages, architectures, and application areas; where we in particular highlight related research and future directions. Finally, security and privacy issues and related existing solutions are also discussed.

1,815 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: This paper provides a set of security protocols, it is shown that they protect privacy and it is analyzed their robustness and efficiency, and describes some major design decisions still to be made.
Abstract: Vehicular networks are very likely to be deployed in the coming years and thus become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical implications. We provide a set of security protocols, we show that they protect privacy and we analyze their robustness and efficiency.

1,550 citations

Proceedings ArticleDOI
25 May 2005
TL;DR: This paper proposes four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluates their effectiveness in terms of how each method affects the ability of a Wireless node to send and receive packets.
Abstract: Wireless networks are built upon a shared medium that makes it easy for adversaries to launch jamming-style attacks. These attacks can be easily accomplished by an adversary emitting radio frequency signals that do not follow an underlying MAC protocol. Jamming attacks can severely interfere with the normal operation of wireless networks and, consequently, mechanisms are needed that can cope with jamming attacks. In this paper, we examine radio interference attacks from both sides of the issue: first, we study the problem of conducting radio interference attacks on wireless networks, and second we examine the critical issue of diagnosing the presence of jamming attacks. Specifically, we propose four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluate their effectiveness in terms of how each method affects the ability of a wireless node to send and receive packets. We then discuss different measurements that serve as the basis for detecting a jamming attack, and explore scenarios where each measurement by itself is not enough to reliably classify the presence of a jamming attack. In particular, we observe that signal strength and carrier sensing time are unable to conclusively detect the presence of a jammer. Further, we observe that although by using packet delivery ratio we may differentiate between congested and jammed scenarios, we are nonetheless unable to conclude whether poor link utility is due to jamming or the mobility of nodes. The fact that no single measurement is sufficient for reliably classifying the presence of a jammer is an important observation, and necessitates the development of enhanced detection schemes that can remove ambiguity when detecting a jammer. To address this need, we propose two enhanced detection protocols that employ consistency checking. The first scheme employs signal strength measurements as a reactive consistency check for poor packet delivery ratios, while the second scheme employs location information to serve as the consistency check. Throughout our discussions, we examine the feasibility and effectiveness of jamming attacks and detection schemes using the MICA2 Mote platform.

1,350 citations

Journal ArticleDOI
TL;DR: In this article, a proactive caching mechanism is proposed to reduce peak traffic demands by proactively serving predictable user demands via caching at base stations and users' devices, and the results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users.
Abstract: This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context awareness, and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies that exploit the spatial and social structure of the network, where proactive caching plays a crucial role. First, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak periods based on file popularity and correlations among user and file patterns. Second, leveraging social networks and D2D communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22 and 26 percent, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.

1,157 citations