scispace - formally typeset
Search or ask a question
Author

Immaculada Margarit Y Ros

Other affiliations: GlaxoSmithKline
Bio: Immaculada Margarit Y Ros is an academic researcher from Novartis. The author has contributed to research in topics: Streptococcus pyogenes & Amino acid. The author has an hindex of 7, co-authored 31 publications receiving 1984 citations. Previous affiliations of Immaculada Margarit Y Ros include GlaxoSmithKline.

Papers
More filters
Journal ArticleDOI
TL;DR: The genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans, was generated and Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactic pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
Abstract: The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.

2,092 citations

Journal ArticleDOI
TL;DR: It is determined that 92% of bloodstream infections caused by serotype V GBS in Houston and Toronto are caused by genetically related strains called sequence type (ST) 1, and that a subset of GBS genes is under selective evolutionary pressure, indicating that proteins produced by these genes likely contribute to GBS host–pathogen interaction.
Abstract: The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.

79 citations

Journal ArticleDOI
TL;DR: It is suggested that these proteins are fine-tuning the last steps of CPS biosynthesis (i.e. the balance between polymerization and attachment to the cell wall), which is a prime target in current vaccine development.

41 citations

Patent
29 Jul 2005
TL;DR: In this paper, the identification of a new adhesin islands within the genomes of several Group A and Group B Streptococcus serotypes and isolates was reported, which are thought to encode surface proteins which are important in the bacteria's virulence.
Abstract: The invention relates to the identification of a new adhesin islands within the genomes of several Group A and Group B Streptococcus serotypes and isolates. The adhesin islands are thought to encode surface proteins which are important in the bacteria's virulence. Thus, the adhesin island proteins of the invention may be used in immunogenic compositions for prophylactic or therapeutic immunization against GAS or GBS infection. For example, the invention may include an immunogenic composition comprising one or more of the discovered adhesin island proteins.

34 citations

Journal ArticleDOI
TL;DR: The PSIII fragments were coupled to the genetically detoxified diphtheria toxin CRM197 to prove by ELISA that the three pentasaccharides are recognized by polyclonal anti-PSIII serum, and the presence of the branching formed by a Glc residue β-(1→6) linked to GlcNAc was proven an important motif for antibody recognition.
Abstract: Abstract Group B Streptococcus type III (GBSIII) is the most relevant serotype among GBS strains causing infections and the potential of its capsular polysaccharide conjugated to a protein carrier as vaccine is well documented. Polysaccharide from GBSIII (PSIII) can form helical structures in solution where negatively charged sialic acid residues would be disposed externally providing stabilization to the helix. A peculiar high affinity to specific monoclonal antibodies (mAbs) has been reported for PSIII, and fragments of diverse size bind to mAbs in a length dependent manner. These data have been rationalized in terms of conformational epitopes that would be formed by fragments with >4 saccharidic repeating units. Saturation Transfer Difference NMR experiments have demonstrated that the sialic acid residue is not involved in antibody recognition. However the molecular basis of the interaction between PSIII and mAbs has not been fully elucidated. An important prerequisite to achieve this would be the availability of the three possible sugar sequences representing the pentasaccharide PSIII repeating unit. Herein we established a [2+3] convergent approach leading to these three pentasaccharides (1–3) with the end terminal sugar bearing a linker for possible conjugation. The PSIII fragments were coupled to the genetically detoxified diphtheria toxin CRM197 to prove by ELISA that the three pentasaccharides are recognized by polyclonal anti-PSIII serum. The presence of the branching formed by a Glc residue β-(1→6) linked to GlcNAc was proven an important motif for antibody recognition.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies less on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence.
Abstract: Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

3,902 citations

Journal ArticleDOI
25 Jun 2010-PLOS ONE
TL;DR: A new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss is described, demonstrating high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental loss and loss.
Abstract: Background Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.

3,302 citations

Journal ArticleDOI
TL;DR: The Integrated Microbial Genomes system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context and provides tools and viewers for analyzing and reviewing the annotations of genes and genomes inA comparative context.
Abstract: The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp).

1,296 citations

Journal ArticleDOI
TL;DR: An important adaptive role for metabolism diversification within group B2 and Shigella strains is found, but few or no extraint intestinal virulence-specific genes are identified, which could render difficult the development of a vaccine against extraintestinal infections.
Abstract: The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.

1,213 citations

Journal ArticleDOI
TL;DR: A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed and the pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome", might be orders of magnitude larger than any single genome.

1,099 citations