scispace - formally typeset
Search or ask a question
Author

Imran Makhdoom

Other affiliations: University of the Sciences
Bio: Imran Makhdoom is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Blockchain & Computer science. The author has an hindex of 6, co-authored 12 publications receiving 434 citations. Previous affiliations of Imran Makhdoom include University of the Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: A systematic study of the peculiarities of the IoT environment including its security and performance requirements and progression in blockchain technologies is carried out and a way forward is proposed to resolve some of the significant challenges to the blockchain's adoption in IoT.

339 citations

Journal ArticleDOI
TL;DR: A composite guideline for the development of an IoT security framework based on industry best practices is proposed and also highlights lessons learned, pitfalls and some open research challenges.
Abstract: The world is resorting to the Internet of Things (IoT) for ease of control and monitoring of smart devices. The ubiquitous use of IoT ranges from industrial control systems (ICS) to e-Health, e-Commerce, smart cities, supply chain management, smart cars, cyber physical systems (CPS), and a lot more. Such reliance on IoT is resulting in a significant amount of data to be generated, collected, processed, and analyzed. The big data analytics is no doubt beneficial for business development. However, at the same time, numerous threats to the availability and privacy of the user data, message, and device integrity, the vulnerability of IoT devices to malware attacks and the risk of physical compromise of devices pose a significant danger to the sustenance of IoT. This paper thus endeavors to highlight most of the known threats at various layers of the IoT architecture with a focus on the anatomy of malware attacks. We present a detailed attack methodology adopted by some of the most successful malware attacks on IoT, including ICS and CPS. We also deduce an attack strategy of a distributed denial of service attack through IoT botnet followed by requisite security measures. In the end, we propose a composite guideline for the development of an IoT security framework based on industry best practices and also highlight lessons learned, pitfalls and some open research challenges.

216 citations

Journal ArticleDOI
TL;DR: This work presents “PrivySharing,” a blockchain-based innovative framework for privacy-preserving and secure IoT data sharing in a smart city environment that conforms to some of the significant requirements outlined in the European Union General Data Protection Regulation.

152 citations

Journal ArticleDOI
TL;DR: This study explores different feature extraction methods, state-of-the-art classification models, and vis-a-vis their impact on an ASR.
Abstract: Recently great strides have been made in the field of automatic speech recognition (ASR) by using various deep learning techniques. In this study, we present a thorough comparison between cutting-edged techniques currently being used in this area, with a special focus on the various deep learning methods. This study explores different feature extraction methods, state-of-the-art classification models, and vis-a-vis their impact on an ASR. As deep learning techniques are very data-dependent different speech datasets that are available online are also discussed in detail. In the end, the various online toolkits, resources, and language models that can be helpful in the formulation of an ASR are also proffered. In this study, we captured every aspect that can impact the performance of an ASR. Hence, we speculate that this work is a good starting point for academics interested in ASR research.

70 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the evolution of the Internet of Things and present the vision for IoT 2.0 development across seven major fields including machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security.
Abstract: Applications and technologies of the Internet of Things are in high demand with the increase of network devices. With the development of technologies such as 5G, machine learning, edge computing, and Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the Internet of Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development is discussed across seven major fields. These fields are machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security. Other than these major fields, the architectural development of the Internet of Things and major types of applications are also reviewed. Finally, this article ends with the vision and current limitations of the Internet of Things in future network environments.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A taxonomy of the security research areas in IoT/IIoT along with their corresponding solutions is designed and several open research directions relevant to the focus of this survey are identified.

476 citations

Journal ArticleDOI
TL;DR: This paper systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks, and sheds light on the gaps in these security solutions that call for ML and DL approaches.
Abstract: The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, can be leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. Finally, we discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. We also discuss several future research directions for ML- and DL-based IoT security.

407 citations

Journal ArticleDOI
TL;DR: This paper explored the current state-of-the-art solutions in the blockchain technology for the smart applications, illustrated the reference architecture used for the blockchain applicability in various Industry 4.0-based applications, and provided a comparison of existing blockchain-based security solutions using various parameters to provide deep insights to the readers about its applicability.
Abstract: Due to the proliferation of ICT during the last few decades, there is an exponential increase in the usage of various smart applications such as smart farming, smart healthcare, supply-chain & logistics, business, tourism and hospitality, energy management etc. However, for all the aforementioned applications, security and privacy are major concerns keeping in view of the usage of the open channel, i.e., Internet for data transfer. Although many security solutions and standards have been proposed over the years to enhance the security levels of aforementioned smart applications, but the existing solutions are either based upon the centralized architecture (having single point of failure) or having high computation and communication costs. Moreover, most of the existing security solutions have focussed only on few aspects and fail to address scalability, robustness, data storage, network latency, auditability, immutability, and traceability. To handle the aforementioned issues, blockchain technology can be one of the solutions. Motivated from these facts, in this paper, we present a systematic review of various blockchain-based solutions and their applicability in various Industry 4.0-based applications. Our contributions in this paper are in four fold. Firstly, we explored the current state-of-the-art solutions in the blockchain technology for the smart applications. Then, we illustrated the reference architecture used for the blockchain applicability in various Industry 4.0 applications. Then, merits and demerits of the traditional security solutions are also discussed in comparison to their countermeasures. Finally, we provided a comparison of existing blockchain-based security solutions using various parameters to provide deep insights to the readers about its applicability in various applications.

361 citations

Journal ArticleDOI
TL;DR: The Blockchain technologies which can potentially address the critical challenges arising from the IoT and hence suit the IoT applications are identified with potential adaptations and enhancements elaborated on the Blockchain consensus protocols and data structures.

355 citations