scispace - formally typeset
Search or ask a question
Author

Imtiaz Parvez

Bio: Imtiaz Parvez is an academic researcher from Florida International University. The author has contributed to research in topics: Smart grid & Smart meter. The author has an hindex of 13, co-authored 40 publications receiving 795 citations. Previous affiliations of Imtiaz Parvez include University of Miami & State University of Campinas.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching.
Abstract: The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching. We also present a general overview of major 5G cellular network elements such as software defined network, network function virtualization, caching, and mobile edge computing capable of meeting latency and other 5G requirements.

643 citations

Journal ArticleDOI
29 Aug 2016-Energies
TL;DR: This paper proposes a localization-based key management system for meter data encryption, and proposes the k-nearest neighbors (kNN) algorithm for node/meter authentication, capitalizing further on data transmission security.
Abstract: In smart cities, advanced metering infrastructure (AMI) of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP). Localization of the meter is proposed by a method based on received signal strength (RSS) using the maximum likelihood estimator (MLE). The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN) algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

47 citations

Journal ArticleDOI
TL;DR: This study proposes segregation of the power disturbance from regular values using one-class support vector machine (OCSVM), a semi-supervised machine learning algorithm which is able to automatically detect any types of disturbances in real time, even unknown types which are not available in the training time.
Abstract: Power quality assessment is an important performance measurement in smart grids. Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters. Addressing this issue, in this study, we propose segregation of the power disturbance from regular values using one-class support vector machine (OCSVM). To precisely detect the power disturbances of a voltage wave, some practical wavelet filters are applied. Considering the unlimited types of waveform abnormalities, OCSVM is picked as a semi-supervised machine learning algorithm which needs to be trained solely on a relatively large sample of normal data. This model is able to automatically detect the existence of any types of disturbances in real time, even unknown types which are not available in the training time. In the case of existence, the disturbances are further classified into different types such as sag, swell, transients and unbalanced. Being light weighted and fast, the proposed technique can be integrated into smart grid devices such as smart meter in order to perform a real-time disturbance monitoring. The continuous monitoring of power quality in smart meters will give helpful insight for quality power transmission and management.

42 citations

Proceedings ArticleDOI
03 Apr 2016
TL;DR: A Multi-Armed Bandit (MAB) based dynamic duty cycle selection method is proposed for configuration of transmission gaps ensuring a better coexistence for both technologies.
Abstract: In order to cope with the phenomenal growth of mobile data traffic, unlicensed spectrum can be utilized by the Long Term Evolution (LTE) cellular systems. However, ensuring fair coexistence with WiFi is a mandatory requirement. In one approach, periodically configurable transmission gaps can be used to facilitate a coexistence between WiFi and LTE. In this paper, a Multi-Armed Bandit (MAB) based dynamic duty cycle selection method is proposed for configuration of transmission gaps ensuring a better coexistence for both technologies. Then the concept is further strengthened with downlink power control mechanism using the same algorithm leading to a high energy efficiency and interference reduction. Performance results are given for different user equipment and WiFi station densities in which it is shown that significant improvements in overall throughput and energy efficiency can be achieved.

36 citations

Journal ArticleDOI
17 Sep 2021-Energies
TL;DR: This survey explores various threats and vulnerabilities that can affect the key elements of cybersecurity in the smart grid network and then presents the security measures to avert those threats andulnerabilities at three different levels.
Abstract: The world is transitioning from the conventional grid to the smart grid at a rapid pace. Innovation always comes with some flaws; such is the case with a smart grid. One of the major challenges in the smart grid is to protect it from potential cyberattacks. There are millions of sensors continuously sending and receiving data packets over the network, so managing such a gigantic network is the biggest challenge. Any cyberattack can damage the key elements, confidentiality, integrity, and availability of the smart grid. The overall smart grid network is comprised of customers accessing the network, communication network of the smart devices and sensors, and the people managing the network (decision makers); all three of these levels are vulnerable to cyberattacks. In this survey, we explore various threats and vulnerabilities that can affect the key elements of cybersecurity in the smart grid network and then present the security measures to avert those threats and vulnerabilities at three different levels. In addition to that, we suggest techniques to minimize the chances of cyberattack at all three levels.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching.
Abstract: The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching. We also present a general overview of major 5G cellular network elements such as software defined network, network function virtualization, caching, and mobile edge computing capable of meeting latency and other 5G requirements.

643 citations

Journal ArticleDOI
TL;DR: The fundamental data management techniques employed to ensure consistency, interoperability, granularity, and reusability of the data generated by the underlying IoT for smart cities are described.
Abstract: Integrating the various embedded devices and systems in our environment enables an Internet of Things (IoT) for a smart city. The IoT will generate tremendous amount of data that can be leveraged for safety, efficiency, and infotainment applications and services for city residents. The management of this voluminous data through its lifecycle is fundamental to the realization of smart cities. Therefore, in contrast to existing surveys on smart cities we provide a data-centric perspective, describing the fundamental data management techniques employed to ensure consistency, interoperability, granularity, and reusability of the data generated by the underlying IoT for smart cities. Essentially, the data lifecycle in a smart city is dependent on tightly coupled data management with cross-cutting layers of data security and privacy, and supporting infrastructure. Therefore, we further identify techniques employed for data security and privacy, and discuss the networking and computing technologies that enable smart cities. We highlight the achievements in realizing various aspects of smart cities, present the lessons learned, and identify limitations and research challenges.

390 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an up-to-date comprehensive survey of the IEEE TSN and IETF DetNet standards and related research studies and identify the pitfalls and limitations of the existing standards and research studies.
Abstract: Many network applications, eg, industrial control, demand ultra-low latency (ULL) However, traditional packet networks can only reduce the end-to-end latencies to the order of tens of milliseconds The IEEE 8021 time sensitive networking (TSN) standard and related research studies have sought to provide link layer support for ULL networking, while the emerging IETF deterministic networking (DetNet) standards seek to provide the complementary network layer ULL support This paper provides an up-to-date comprehensive survey of the IEEE TSN and IETF DetNet standards and the related research studies The survey of these standards and research studies is organized according to the main categories of flow concept, flow synchronization, flow management, flow control, and flow integrity ULL networking mechanisms play a critical role in the emerging fifth generation (5G) network access chain from wireless devices via access, backhaul, and core networks We survey the studies that specifically target the support of ULL in 5G networks, with the main categories of fronthaul, backhaul, and network management Throughout, we identify the pitfalls and limitations of the existing standards and research studies This survey can thus serve as a basis for the development of standards enhancements and future ULL research studies that address the identified pitfalls and limitations

316 citations

Journal ArticleDOI
26 Mar 2019
TL;DR: The relationship of IoT and SG, a huge dynamic global network infrastructure of Internet-enabled entities with web services, and some IoT architectures in SG are talked about.
Abstract: Internet of Things (IoT) is a connection of people and things at any time, in any place, with anyone and anything, using any network and any service. Thus, IoT is a huge dynamic global network infrastructure of Internet-enabled entities with web services. One of the most important applications of IoT is the Smart Grid (SG). SG is a data communications network which is integrated with the power grid to collect and analyze data that are acquired from transmission lines, distribution substations, and consumers. In this paper, we talk about IoT and SG and their relationship. Some IoT architectures in SG, requirements for using IoT in SG, IoT applications and services in SG, and challenges and future work are discussed.

306 citations

Journal ArticleDOI
TL;DR: This article analyzes the main features of MEC in the context of 5G and IoT and presents several fundamental key technologies which enable MEC to be applied in 5Gs and IoT, such as cloud computing, software-defined networking/network function virtualization, information-centric networks, virtual machine (VM) and containers, smart devices, network slicing, and computation offloading.
Abstract: To satisfy the increasing demand of mobile data traffic and meet the stringent requirements of the emerging Internet-of-Things (IoT) applications such as smart city, healthcare, and augmented/virtual reality (AR/VR), the fifth-generation (5G) enabling technologies are proposed and utilized in networks As an emerging key technology of 5G and a key enabler of IoT, multiaccess edge computing (MEC), which integrates telecommunication and IT services, offers cloud computing capabilities at the edge of the radio access network (RAN) By providing computational and storage resources at the edge, MEC can reduce latency for end users Hence, this article investigates MEC for 5G and IoT comprehensively It analyzes the main features of MEC in the context of 5G and IoT and presents several fundamental key technologies which enable MEC to be applied in 5G and IoT, such as cloud computing, software-defined networking/network function virtualization, information-centric networks, virtual machine (VM) and containers, smart devices, network slicing, and computation offloading In addition, this article provides an overview of the role of MEC in 5G and IoT, bringing light into the different MEC-enabled 5G and IoT applications as well as the promising future directions of integrating MEC with 5G and IoT Moreover, this article further elaborates research challenges and open issues of MEC for 5G and IoT Last but not least, we propose a use case that utilizes MEC to achieve edge intelligence in IoT scenarios

303 citations