scispace - formally typeset
Search or ask a question
Author

In-Young Choi

Bio: In-Young Choi is an academic researcher from University of Kansas. The author has contributed to research in topics: Neurochemical & Glycogen. The author has an hindex of 28, co-authored 83 publications receiving 3329 citations. Previous affiliations of In-Young Choi include University of Minnesota & Nathan Kline Institute for Psychiatric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Using optimized, asymmetric radiofrequency (RF) pulses for slice selection, the authors demonstrate that stimulated echo acquisition mode (STEAM) localization with ultra‐short echo time (1 ms) is possible, resulting in highly resolved in vivo 1H nuclear magnetic resonance spectra.
Abstract: Using optimized, asymmetric radiofrequency (RF) pulses for slice selection, the authors demonstrate that stimulated echo acquisition mode (STEAM) localization with ultra-short echo time (1 ms) is possible. Water suppression was designed to minimize sensitivity to B1 inhomogeneity using a combination of 7 variable power RF pulses with optimized relaxation delays (VAPOR). Residual water signal was well below the level of most observable metabolites. Contamination by the signals arising from outside the volume of interest was minimized by outer volume saturation using a series of hyperbolic secant RF pulses, resulting in a sharp volume definition. In conjunction with FASTMAP shimming (Gruetter Magn Reson Med 1993;29: 804-811), the short echo time of 1 msec resulted in highly resolved in vivo 1H nuclear magnetic resonance spectra. In rat brain the water linewidths of 11-13 Hz and metabolite singlet linewidths of 8-10 Hz were measured in 65 microl volumes. Very broad intense signals (delta v(1/2) > 1 kHz), as expected from membranes, for example, were not observed, suggesting that their proton T2 are well below 1 msec. The entire chemical shift range of 1H spectrum was observable, including resolved resonances from alanine, aspartate, choline group, creatine, GABA, glucose, glutamate, glutamine, myo-inositol, lactate, N-acetylaspartate, N-acetylaspartylglutamate, phosphocreatine, and taurine. At 9.4 T, peaks close to the water were observed, including the H-1 of alpha-D-glucose at 5.23 ppm and a tentative H-1 resonance of glycogen at 5.35 ppm.

897 citations

Journal ArticleDOI
TL;DR: A consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions, and use of the semi‐adiabatic localization by adiabatic selective refocusing sequence is a recommended solution.
Abstract: Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.

237 citations

Journal ArticleDOI
TL;DR: The data suggest that brain glycogen can provide fuel for extended periods of time when glucose supply is inadequate and that it may participate in the creation of reduced physiological responses to hypoglycemia that are involved in a symptom often observed in patients with diabetes, hypoglyCEmia unawareness.
Abstract: The brain contains a small but significant amount of glycogen, which has long been considered to play an insignificant role in the brain. In this study, brain glycogen metabolism was measured using (13)C NMR spectroscopy at 9.4 T. Brain glycogen metabolism was modulated by hyperinsulinemia resulting in a net accumulation. The role of glycogen in maintaining brain function is unknown; one possibility is that it may serve as an endogenous glucose reservoir to protect the brain against severe hypoglycemia. To address this possibility, rats were subjected to insulin-induced moderate hypoglycemia and when the level of brain glucose approached zero, brain glycogen content began to decrease gradually, demonstrating utilization of this glucose reservoir. The brain glycogen signal never became undetectable, however, even during 2 hr of hypoglycemia. When plasma and brain glucose concentrations were restored, glycogen increased and the concentration exceeded the pre-hypoglycemic level by several-fold. The data suggest that brain glycogen can provide fuel for extended periods of time when glucose supply is inadequate. Furthermore, brain glycogen can rebound (super-compensate) after a single episode of hypoglycemia. We postulate that brain glycogen serves as an energy store during hypoglycemia and that it may participate in the creation of reduced physiological responses to hypoglycemia that are involved in a symptom often observed in patients with diabetes, hypoglycemia unawareness.

204 citations

Journal ArticleDOI
TL;DR: It is concluded that the unique and novel insights provided by 13C NMR spectroscopy have opened many new research areas that are likely to improve the understanding of brain carbohydrate metabolism in health and disease.
Abstract: Localized (13)C NMR spectroscopy provides a new investigative tool for studying cerebral metabolism. The application of (13)C NMR spectroscopy to living intact humans and animals presents the investigator with a number of unique challenges. This review provides in the first part a tutorial insight into the ingredients required for achieving a successful implementation of localized (13)C NMR spectroscopy. The difficulties in establishing (13)C NMR are the need for decoupling of the one-bond (13)C-(1)H heteronuclear J coupling, the large chemical shift range, the low sensitivity and the need for localization of the signals. The methodological consequences of these technical problems are discussed, particularly with respect to (a) RF front-end considerations, (b) localization methods, (c) the low sensitivity, and (d) quantification methods. Lastly, some achievements of in vivo localized (13)C NMR spectroscopy of the brain are reviewed, such as: (a) the measurement of brain glutamine synthesis and the feasibility of quantifying glutamatergic action in the brain; (b) the demonstration of significant anaplerotic fluxes in the brain; (c) the demonstration of a highly regulated malate-aspartate shuttle in brain energy metabolism and isotope flux; (d) quantification of neuronal and glial energy metabolism; and (e) brain glycogen metabolism in hypoglycemia in rats and humans. We conclude that the unique and novel insights provided by (13)C NMR spectroscopy have opened many new research areas that are likely to improve the understanding of brain carbohydrate metabolism in health and disease.

152 citations

Journal ArticleDOI
TL;DR: Extrapolation of the reversible Michaelis–Menten model to hypoglycemia correctly predicted the plasma glucose concentration at which brain glucose concentrations approached zero, and Cerebral blood flow increased sharply, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglyCEmia.
Abstract: Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.

150 citations


Cited by
More filters
01 Jan 2007

4,037 citations

Journal ArticleDOI
TL;DR: Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptides N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain, and it is proposed that N AA may also be involved in brain nitrogen balance.

1,190 citations

Journal ArticleDOI
TL;DR: The classical adiabatic rapid passage is analyzed using vector models in different rotating frames of reference and ways to tailor modulation functions to best satisfy specific experimental needs are demonstrated.

848 citations

Journal ArticleDOI
TL;DR: Signal‐to‐noise ratio (SNR), RF field (B1), and RF power requirement for human head imaging were examined at 7T and 4T magnetic field strengths and were consistent with calculations performed using a human head model and Maxwell's equations.
Abstract: Signal-to-noise ratio (SNR), RF field (B1), and RF power requirement for human head imaging were examined at 7T and 4T magnetic field strengths. The variation in B1 magnitude was nearly twofold higher at 7T than at 4T (;42% compared to ;23%). The power required for a 90° pulse in the center of the head at 7T was approximately twice that at 4T. The SNR averaged over the brain was at least 1.6 times higher at 7T compared to 4T. These experimental results were consistent with calculations performed using a human head model and Maxwell’s equations. Magn Reson Med 46:24 ‐30, 2001.

846 citations

01 Jan 2001
TL;DR: In this article, the classical adiabatic rapid passage is analyzed using vector models in different rotating frames of reference, and two methods to optimize adabaticity are described, and ways to tailor modulation functions to best satisfy specific experimental needs are demonstrated.
Abstract: Frequency-modulated (FM) pulses that function according to adiabatic principles are becoming increasingly popular in many areas of NMR. Often adiabatic pulses can extend experimental capabilities and minimize annoying experimental imperfections. Here, adiabatic principles and some of the current methods used to create these pulses are considered. The classical adiabatic rapid passage, which is a fundamental element upon which all adiabatic pulses and sequences are based, is analyzed using vector models in different rotating frames of reference. Two methods to optimize adiabaticity are described, and ways to tailor modulation functions to best satisfy specific experimental needs are demonstrated. Finally, adiabatic plane rotation pulses and frequency-selective multiple spin-echo sequences are considered.

721 citations