scispace - formally typeset
Search or ask a question
Author

Ina Hulsegge

Bio: Ina Hulsegge is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Population & Breed. The author has an hindex of 9, co-authored 24 publications receiving 1029 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls.
Abstract: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.

690 citations

Journal ArticleDOI
TL;DR: Investigation of accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle found that SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputations varied more.
Abstract: Background: The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle. Methods: Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated. Results: Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs. Conclusions: Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.

126 citations

Journal ArticleDOI
TL;DR: Two gene set analysis approaches are presented: Globaltest and GOEAST, which identified significantly associated gene sets in one of the three contrasts made in the microarray experiment whereas the functional analysis of the differentially expressed genes using GOEasts revealed enriched GO terms in all three contrasts.
Abstract: Gene set analysis is a commonly used method for analysing microarray data by considering groups of functionally related genes instead of individual genes. Here we present the use of two gene set analysis approaches: Globaltest and GOEAST. Globaltest is a method for testing whether sets of genes are significantly associated with a variable of interest. GOEAST is a freely accessible web-based tool to test GO term enrichment within given gene sets. The two approaches were applied in the analysis of gene lists obtained from three different contrasts in a microarray experiment conducted to study the host reactions in broilers following Eimeria infection. The Globaltest identified significantly associated gene sets in one of the three contrasts made in the microarray experiment whereas the functional analysis of the differentially expressed genes using GOEAST revealed enriched GO terms in all three contrasts. Globaltest and GOEAST gave different results, probably due to the different algorithms and the different criteria used for evaluating the significance of GO terms.

126 citations

Journal ArticleDOI
TL;DR: Two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented and provided biological insight in how the process of porcine myogenesis is regulated.
Abstract: Background: Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet. Mammalian muscle formation has been previously studied using microarray technology in pigs because these animals are an interesting animal model for muscle formation due to selection for increased muscle mass. Results indicated regulation of the expression of genes involved in proliferation and differentiation of myoblasts, and energy metabolism. The aim of the present study was to analyse microarrays studying myogenesis in pigs. It was necessary to develop methods to search biochemical pathways databases. Results: PERL scripts were developed that used the names of the genes on the microarray to search databases. Synonyms of gene names were added to the list by searching the Gene Ontology database. The KEGG database was searched for pathway information using this updated gene list. The KEGG database returned 88 pathways. Most genes were found in a single pathway, but others were found in up to seven pathways. Combining the pathways and the microarray information 21 pathways showed sufficient information content for further analysis. These pathways were related to regulation of several steps in myogenesis and energy metabolism. Pathways regulating myoblast proliferation and muscle fibre formation were described. Furthermore, two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented. Conclusion: Combining microarray results and pathways information available through the internet provide biological insight in how the process of porcine myogenesis is regulated.

65 citations

Journal ArticleDOI
TL;DR: It is recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.
Abstract: The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Abstract: The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.

4,658 citations

Journal ArticleDOI
01 Mar 1941-Nature
TL;DR: In this article, Gray has written a book on diseases of poultry, Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl.
Abstract: VERY few veterinary surgeons have thought fit to write a book on diseases of poultry. Mr. Ernest Gray has done justice to the subject and is to be congratulated on his effort. A book of this size, written by one with specialized knowledge, will add to the value of any library or private bookshelf. Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl. By Ernest Gray. (Lockwood's Agricultural and Horticultural Handbooks.) Pp. x + 198 + 16 plates. (London: Crosby Lockwood and Son, Ltd., 1940.) 9s. 6d. net.

1,282 citations

Journal ArticleDOI
TL;DR: The development of pathway-based approaches for GWA studies are reviewed, their practical use and caveats are discussed, and it is suggested that pathway- based approaches may also be useful for future GWA study data sets with sequencing data.
Abstract: Genome-wide association (GWA) studies have typically focused on the analysis of single markers, which often lacks the power to uncover the relatively small effect sizes conferred by most genetic variants. Recently, pathway-based approaches have been developed, which use prior biological knowledge on gene function to facilitate more powerful analysis of GWA study data sets. These approaches typically examine whether a group of related genes in the same functional pathway are jointly associated with a trait of interest. Here we review the development of pathway-based approaches for GWA studies, discuss their practical use and caveats, and suggest that pathway-based approaches may also be useful for future GWA studies with sequencing data.

796 citations

Journal ArticleDOI
TL;DR: This Review demonstrates the breadth of questions that are being addressed by Pool-seq but also discusses its limitations and provides guidelines for users.
Abstract: The analysis of polymorphism data is becoming increasingly important as a complementary tool to classical genetic analyses. Nevertheless, despite plunging sequencing costs, genomic sequencing of individuals at the population scale is still restricted to a few model species. Whole-genome sequencing of pools of individuals (Pool-seq) provides a cost-effective alternative to sequencing individuals separately. With the availability of custom-tailored software tools, Pool-seq is being increasingly used for population genomic research on both model and non-model organisms. In this Review, we not only demonstrate the breadth of questions that are being addressed by Pool-seq but also discuss its limitations and provide guidelines for users.

642 citations

Journal ArticleDOI
TL;DR: A web-based server, called Metabolite Set Enrichment Analysis (MSEA), is introduced to help researchers identify and interpret patterns of human or mammalian metabolite concentration changes in a biologically meaningful context.
Abstract: Gene set enrichment analysis (GSEA) is a widely used technique in transcriptomic data analysis that uses a database of predefined gene sets to rank lists of genes from microarray studies to identify significant and coordinated changes in gene expression data. While GSEA has been playing a significant role in understanding transcriptomic data, no similar tools are currently available for understanding metabolomic data. Here, we introduce a web-based server, called Metabolite Set Enrichment Analysis (MSEA), to help researchers identify and interpret patterns of human or mammalian metabolite concentration changes in a biologically meaningful context. Key to the development of MSEA has been the creation of a library of approximately 1000 predefined metabolite sets covering various metabolic pathways, disease states, biofluids, and tissue locations. MSEA also supports user-defined or custom metabolite sets for more specialized analysis. MSEA offers three different enrichment analyses for metabolomic studies including overrepresentation analysis (ORA), single sample profiling (SSP) and quantitative enrichment analysis (QEA). ORA requires only a list of compound names, while SSP and QEA require both compound names and compound concentrations. MSEA generates easily understood graphs or tables embedded with hyperlinks to relevant pathway images and disease descriptors. For non-mammalian or more specialized metabolomic studies, MSEA allows users to provide their own metabolite sets for enrichment analysis. The MSEA server also supports conversion between metabolite common names, synonyms, and major database identifiers. MSEA has the potential to help users identify obvious as well as 'subtle but coordinated' changes among a group of related metabolites that may go undetected with conventional approaches. MSEA is freely available at http://www.msea.ca.

556 citations