scispace - formally typeset
Search or ask a question
Author

Ina Reiche

Bio: Ina Reiche is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Cave & Painting. The author has an hindex of 25, co-authored 107 publications receiving 2283 citations. Previous affiliations of Ina Reiche include Prussian Cultural Heritage Foundation & Max Planck Society.
Topics: Cave, Painting, Calcite, Irradiation, Underglaze


Papers
More filters
Journal ArticleDOI
TL;DR: A 3D micro X-ray fluorescence (micro-XRF) analysis method based on a confocal Xray set-up is presented in this article, which is evaluated and illustrated with depth sensitive investigations of paint layers in ancient Indian Mughal miniatures.
Abstract: A new 3D micro X-ray fluorescence (micro-XRF) analysis method based on a confocal X-ray set-up is presented. The capabilities of this new method are evaluated and illustrated with depth sensitive investigations of paint layers in ancient Indian Mughal miniatures. Successive paint layers could be distinguished non-destructively with a depth resolution of about 10 μm. Major and minor elements are detectable and can be discriminated in different layers. New light could be shed on ancient painting techniques and materials with this new 3D micro-XRF set-up.

245 citations

Journal ArticleDOI
TL;DR: In this paper, modern bones were experimentally heated in order to monitor the changes of FTIR spectral features related to an evolution of mineral properties, and the results obtained on modern and fossil bones demonstrate that low temperature heating and diagenetic processes may induce similar effects on bone mineral.

142 citations

Journal ArticleDOI
TL;DR: High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.
Abstract: Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.

127 citations

Journal ArticleDOI
TL;DR: The feasibility of 3D micro-XRF spectroscopy with a tabletop setup is demonstrated and its sensitivity in comparison to the synchrotron-based setup is discussed.

126 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of complementary elemental and structural analyses (particle-induced x-ray emission, particle-induced γ-ray emissions, scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), electron microprobe, xray diffraction, infrared spectroscopy, TEM with EDX), microscopic observations, and porosity measurements are performed.
Abstract: Bone remains play an important role in archaeology as a source of information about the past. However, they alter over time. Alteration occurs at all scales from the macroscopic to nanoscopic level. The evaluation of information extracted on palaeodiets, ages and palaeoclimates from their chemical and isotopic composition requires the study of diagenetic modifications by means of different complementary analytical methods. Diagenetic parameters that quantify the post-mortem alteration of bone are bone histology, porosity, protein content, crystallinity of bone apatite, carbonate content, enrichment and leaching of chemical species in general. The investigation of these features can be performed by a combination of complementary elemental and structural analyses (particle-induced x-ray emission, particle-induced γ-ray emission, scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDX), electron microprobe, x-ray diffraction, infrared spectroscopy, transmission electron microscopy (TEM) with EDX), microscopic observations (optical, SEM, TEM) and porosity measurements.The study of animal bones from the Neolithic site of Bercy, France (4000 BC) from the same archaeological layer within different local depositional, hydrological and redox environments illustrates the possible information that can be extracted from the diagenetic study on the processes affecting the state of bone preservation. The main characteristic of the bone buried in the waterlogged zone is a high level of preservation of the organic matter and a low level of porosity inhibiting major structural or chemical modifications. The bone sample from the zone with a fluctuating hydrological regime shows a low level of organic matter and high porosity. Knowledge of the diagenetic patterns enables an estimation of the reliability of information obtained from bone analyses.

98 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: This review summarizes and discusses the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure-property relationships, TadF mechanisms and applications.
Abstract: Organic materials that exhibit thermally activated delayed fluorescence (TADF) are an attractive class of functional materials that have witnessed a booming development in recent years. Since Adachi et al. reported high-performance TADF-OLED devices in 2012, there have been many reports regarding the design and synthesis of new TADF luminogens, which have various molecular structures and are used for different applications. In this review, we summarize and discuss the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure–property relationships, TADF mechanisms and applications. We hope that such a review provides a clear outlook of these novel functional materials for a broad range of scientists within different disciplinary areas and attracts more researchers to devote themselves to this interesting research field.

1,566 citations

Journal ArticleDOI
TL;DR: A comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices.
Abstract: We thank the University of St Andrews for support. EZ-C thanks the Leverhulme Trust for financial support (RPG-2016-047). and the EPSRC (EP/P010482/1) for financial support.

1,317 citations

Journal ArticleDOI
TL;DR: The general overview of the field and the background for appropriate modelling of the physical phenomena are provided and the current state of the art and most recent applications of plasmon resonance in Au NPs are reported.
Abstract: In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.

1,205 citations

Journal ArticleDOI
TL;DR: The present review is devoted to summarizing the recent advances (2015–2017) in the field of metal-catalysed group-directed C–H functionalisation.
Abstract: The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure The schemes feature typical substrates used, the products obtained as well as the required reaction conditions Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them Accordingly, this review should be of particular interest also for scientists from industrial R&D sector Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date

1,057 citations