scispace - formally typeset
Search or ask a question
Author

Inchan Kwon

Bio: Inchan Kwon is an academic researcher from Gwangju Institute of Science and Technology. The author has contributed to research in topics: Human serum albumin & Urate oxidase. The author has an hindex of 22, co-authored 75 publications receiving 1511 citations. Previous affiliations of Inchan Kwon include LG Chem & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: Molecular engineering and directed evolution of AAV vectors offer promise for generating ‘designer’ gene delivery vectors with enhanced properties, particularly those based on AAV2, the best characterized AAV serotype.
Abstract: Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties.

166 citations

Journal ArticleDOI
TL;DR: An E. coli strain co-transformed with ytRNAPheAAA and a mutant yeast phenylalanyl-tRNA synthetase is used to demonstrate efficient replacement of phenylalanine by L-3-(2-naphthyl)alanine (Nal) at UUU, but not at UUC codons.
Abstract: A mutant yeast phenylalanine transfer RNA (ytRNAPheAAA) containing a modified (AAA) anticodon was generated to explore the feasibility of breaking the degeneracy of the genetic code in Escherichia coli. By using an E. coli strain co-transformed with ytRNAPheAAA and a mutant yeast phenylalanyl-tRNA synthetase, we demonstrate efficient replacement of phenylalanine (Phe) by L-3-(2-naphthyl)alanine (Nal) at UUU, but not at UUC codons.

132 citations

Journal ArticleDOI
TL;DR: An overview of the recent progress in the development of novel nanomaterials for the alleviation of hypoxic microenvironment is presented, with promising start in the early phase and expected to grow rapidly in the coming years.

129 citations

Journal ArticleDOI
TL;DR: This work applied directed evolution to create a "designer" AAV vector with enhanced delivery efficiency for neural stem cells (NSCs), and a novel AAV variant, carrying an insertion of a selected peptide sequence on the surface of the threefold spike within the heparin-binding site, emerged from this evolution.

108 citations

Journal ArticleDOI
TL;DR: It is demonstrated that BBG is an effective Aβ aggregation modulator, which reduces Aβ-associated cytotoxicity in a dose-dependent manner by promoting the formation of off-pathway, nontoxic aggregates and supports the hypothesis that generating nont toxic aggregates using small molecule modulators is aneffective strategy for reducing Aβ cytot toxicity.
Abstract: Growing evidence suggests that on-pathway amyloid-β (Aβ) oligomers are primary neurotoxic species and have a direct correlation with the onset of Alzheimer’s disease (AD). One promising therapeutic strategy to block AD progression is to reduce the levels of these neurotoxic Aβ species using small molecules. While several compounds have been shown to modulate Aβ aggregation, compounds with such activity combined with safety and high blood-brain barrier (BBB) permeability have yet to be reported. Brilliant Blue G (BBG) is a close structural analogue of a U.S. Food and Drug Administration (FDA)-approved food dye and has recently garnered prominent attention as a potential drug to treat spinal cord injury due to its neuroprotective effects along with BBB permeability and high degree of safety. In this work, we demonstrate that BBG is an effective Aβ aggregation modulator, which reduces Aβ-associated cytotoxicity in a dose-dependent manner by promoting the formation of off-pathway, nontoxic aggregates. Comparative studies of BBG and three structural analogues, Brilliant Blue R (BBR), Brilliant Blue FCF (BBF), and Fast Green FCF (FGF), revealed that BBG is most effective, BBR is moderately effective, and BBF and FGF are least effective in modulating Aβ aggregation and cytotoxicity. Therefore, the two additional methyl groups of BBG and other structural differences between the congeners are important in the interaction of BBG with Aβ leading to formation of nontoxic Aβ aggregates. Our findings support the hypothesis that generating nontoxic aggregates using small molecule modulators is an effective strategy for reducing Aβ cytotoxicity. Furthermore, key structural features of BBG identified through structure–function studies can open new avenues into therapeutic design for combating AD.

63 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 2004-Nature
TL;DR: New challenges and directions in biomaterials research are discussed, including synthetic replacements for biological tissues, designing materials for specific medical applications, and materials for new applications such as diagnostics and array technologies.
Abstract: Biomaterials have played an enormous role in the success of medical devices and drug delivery systems. We discuss here new challenges and directions in biomaterials research. These include synthetic replacements for biological tissues, designing materials for specific medical applications, and materials for new applications such as diagnostics and array technologies.

2,949 citations

Journal ArticleDOI
TL;DR: This critical review of polymers that can respond to external stimuli considers the types of stimulus response used in therapeutic applications and the main classes of responsive materials developed to date.
Abstract: Polymers that can respond to external stimuli are of great interest in medicine, especially as controlled drug release vehicles. In this critical review, we consider the types of stimulus response used in therapeutic applications and the main classes of responsive materials developed to date. Particular emphasis is placed on the wide-ranging possibilities for the biomedical use of these polymers, ranging from drug delivery systems and cell adhesion mediators to controllers of enzyme function and gene expression (134 references).

1,569 citations

Journal ArticleDOI
TL;DR: The development of new orthogonal aminoacyl-tRNA synthetase/tRNA pairs has led to the addition of approximately 70 unnatural amino acids to the genetic codes of Escherichia coli, yeast, and mammalian cells, which provide new opportunities to generate proteins with enhanced or novel properties and probes of protein structure and function.
Abstract: The development of new orthogonal aminoacyl-tRNA synthetase/tRNA pairs has led to the addition of approximately 70 unnatural amino acids (UAAs) to the genetic codes of Escherichia coli, yeast, and mammalian cells. These UAAs represent a wide range of structures and functions not found in the canonical 20 amino acids and thus provide new opportunities to generate proteins with enhanced or novel properties and probes of protein structure and function.

1,554 citations