scispace - formally typeset
Search or ask a question
Author

Ingo Diepholz

Other affiliations: Max Planck Society
Bio: Ingo Diepholz is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Pathfinder & Gravitational wave. The author has an hindex of 17, co-authored 53 publications receiving 1541 citations. Previous affiliations of Ingo Diepholz include Max Planck Society.


Papers
More filters
Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations

Journal ArticleDOI
TL;DR: This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.
Abstract: In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μ Hz . The Letter presents the measured differential acceleration noise figure, which is at ( 1.74 ± 0.01 ) fm s − 2 / √ Hz above 2 mHz and ( 6 ± 1 ) × 10 fm s − 2 / √ Hz at 20 μ Hz , and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

271 citations

Posted Content
Pau Amaro-Seoane1, Sofiane Aoudia, Heather Audley, Gerard Auger  +155 moreInstitutions (6)
TL;DR: The eLISA mission as discussed by the authors is the first mission to study the entire universe with gravitational waves, and it will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe.
Abstract: The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

208 citations

Journal ArticleDOI
TL;DR: The LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission as discussed by the authors, and the progress made in preparing its effective implementation in flight.
Abstract: LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.

94 citations

Journal ArticleDOI
F. Antonucci1, Michele Armano2, Heather Audley3, G. Auger4, Matteo Benedetti1, Pierre Binétruy4, J. Bogenstahl3, Daniele Bortoluzzi1, Paolo Bosetti1, N. Brandt5, M. Caleno2, Priscilla Canizares6, Antonella Cavalleri1, M. Cesa2, M. Chmeissani7, A. Conchillo6, G. Congedo1, I. Cristofolini1, M. Cruise8, Karsten Danzmann3, F. De Marchi1, M. Diaz-Aguilo, Ingo Diepholz3, G. Dixon8, Rita Dolesi1, N. Dunbar9, J. Fauste2, Luigi Ferraioli4, V. Ferrone1, Walter Fichter, Ewan Fitzsimons10, M. Freschi2, A. F. Garcia Marin3, C. García Marirrodriga2, R. Gerndt5, Lluis Gesa6, F. Gilbert6, Domenico Giardini11, Catia Grimani, A. Grynagier, B. Guillaume2, Felipe Guzman3, I. Harrison12, Gerhard Heinzel3, V. Hernández6, Martin Hewitson3, Daniel Hollington13, J. H. Hough10, D. Hoyland8, Mauro Hueller1, J. Huesler2, Oliver Jennrich2, Philippe Jetzer14, B. Johlander2, N. Karnesis6, Christian J. Killow10, X. Llamas, Ivan Lloro6, A. Lobo6, R. Maarschalkerweerd12, S. Madden2, Davor Mance11, Ignacio Mateos6, Paul McNamara2, José F. F. Mendes12, E. Mitchell13, A. Monsky3, D. Nicolini2, Daniele Nicolodi1, Miquel Nofrarías6, F. Pedersen2, Michael Perreur-Lloyd10, Eric Plagnol4, P. Prat4, Giuseppe D. Racca2, Juan Ramos-Castro15, J. Reiche3, J. A. Romera Perez2, David Robertson10, H. Rozemeijer2, J. Sanjuan16, A. Schleicher5, M. Schulte13, D. Shaul13, L. Stagnaro2, S. Strandmoe2, Frank Steier3, T. J. Sumner13, A.M. Taylor10, D. Texier2, C. Trenkel9, H.-B. Tu1, Stefano Vitale1, Gudrun Wanner3, H. Ward10, S. Waschke13, Peter Wass13, W. J. Weber1, Tobias Ziegler5, Peter Zweifel11 
TL;DR: The current status of the LISA Pathfinder mission is described, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA, and performance measurements and analysis of these flight components lead to an expected performance of theLISA Pathfinder which is a significant improvement over the mission requirements.
Abstract: In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

74 citations


Cited by
More filters
01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Abstract: One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

1,066 citations

Journal ArticleDOI
TL;DR: In this article, the authors review early universe sources that can lead to cosmological backgrounds of GWs and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA.
Abstract: Gravitational waves (GWs) have a great potential to probe cosmology. We review early universe sources that can lead to cosmological backgrounds of GWs. We begin by presenting proper definitions of GWs in flat space-time and in a cosmological setting (section 2). Following, we discuss the reasons why early universe GW backgrounds are of a stochastic nature, and describe the general properties of a stochastic background (section 3). We recap current observational constraints on stochastic backgrounds, and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA (section 4). We then review in detail early universe GW generation mechanisms, as well as the properties of the GW backgrounds they give rise to. We classify the backgrounds in five categories: GWs from quantum vacuum fluctuations during standard slow-roll inflation (section 5), GWs from processes that operate within extensions of the standard inflationary paradigm (section 6), GWs from post-inflationary preheating and related non-perturbative phenomena (section 7), GWs from first order phase transitions related or not to the electroweak symmetry breaking (section 8), and GWs from general topological defects, and from cosmic strings in particular (section 9). The phenomenology of these early universe processes is extremely rich, and some of the GW backgrounds they generate can be within the reach of near-future GW detectors. A future detection of any of these backgrounds will provide crucial information on the underlying high energy theory describing the early universe, probing energy scales well beyond the reach of particle accelerators.

643 citations

Journal ArticleDOI
Seiji Kawamura1, Hiroo Kunimori2, Mizuhiko Hosokawa2, Ryuichi Fujita3, Keiichi Maeda4, Hisa-aki Shinkai5, Takahiro Tanaka6, Yaka Wakabayashi6, Hideki Ishihara7, Kazutaka Nishiyama8, Ken-ichi Ueda9, Kaiki Taro Inoue10, Kazuhiro Yamamoto8, Kunihito Ioka, Feng-Lei Hong11, Yoshiki Tsunesada12, Kenji Numata13, Masaru Shibata6, Hitoshi Kuninaka8, Kazuhiro Hayama1, Chul-Moon Yoo6, Kazuhiro Agatsuma1, Mitsuru Musha9, Shinji Miyoki14, Yasufumi Kojima15, Yumiko Ejiri16, Takamori Akiteru14, Kentaro Somiya4, Dan Chen14, Tadayuki Takahashi8, Shiho Kobayashi17, Mitsuhiro Fukushima1, Takashi Nakamura6, Naoshi Sugiyama18, Yuta Michimura14, Yoshiyuki Obuchi1, Ayaka Shoda14, Kei Kotake1, Shihori Sakata, Takeshi Chiba19, Yoichi Aso14, Shigeo Nagano2, Tomohiro Harada20, Kiwamu Izumi14, Nobuyuki Kanda7, Isao Kawano8, Nobuki Kawashima10, Yasuo Torii1, Motohiro Enoki21, Yoshiaki Himemoto19, Hirotaka Takahashi22, Yudai Suwa6, Hisashi Hirabayashi, Hiroyuki Ito2, Keitaro Takahashi18, Kiyotomo Ichiki18, Kazuhiro Nakazawa14, Morio Toyoshima2, Takashi Hiramatsu6, Hiroyuki Nakano23, Hiroyuki Koizumi8, Ke-Xun Sun24, Toshikazu Ebisuzaki, Kent Yagi6, Takeshi Ikegami11, Koji Arai25, Kouji Nakamura1, Norio Okada1, Takeshi Takashima8, Takehiko Ishikawa8, K. Okada14, Wataru Kokuyama14, Kakeru Takahashi14, Masa-Katsu Fujimoto1, Ryuichi Takahashi26, Ryo Saito14, K. Tsubono14, Osamu Miyakawa14, Ken-ichi Oohara27, Hideyuki Horisawa28, Hideharu Ishizaki1, Shigenori Moriwaki14, Norichika Sago6, Masashi Ohkawa27, Fuminobu Takahashi14, Tatsuaki Hashimoto8, Takashi Sato27, Sachiko Kuroyanagi14, Umpei Miyamoto20, Kazuaki Kuroda14, Toshifumi Futamase29, Fumiko Kawazoe, Hideyuki Tagoshi30, Yoshinori Nakayama31, Masatake Ohashi14, Yoshiharu Eriguchi14, Toshitaka Yamazaki1, Tadashi Takano19, Hiroshi Yamakawa6, Kenta Kiuchi6, Ken-ichi Nakao7, Taiga Noumi14, Kazunori Kohri, Shinichi Nakasuka14, Wataru Hikida30, Hideo Matsuhara8, Isao Naito27, Tomotada Akutsu1, Shijun Yoshida29, Nobuyuki Matsumoto14, Masa-aki Sakagami6, Naoko Ohishi1, Ikkoh Funaki8, Hajime Sotani32, Taizoh Yoshino16, Atsushi Taruya14, Mutsuko Y. Morimoto8, E. Nishida16, Atsushi J. Nishizawa6, Hideki Asada26, Toshiyuki Morisawa6, Shinji Mukohyama14, Shuichi Sato33, Keisuke Taniguchi14, Yousuke Itoh34, Shinji Tsujikawa35, Rieko Suzuki16, Keiko Kokeyama36, Misao Sasaki6, Naoki Seto6, Koji Ishidoshiro14, Ryutaro Takahashi1, Shin-ichiro Sakai8, Hiroyuki Tashiro6, Motoyuki Saijo20, Naoko Kishimoto6, Masaki Ando6, Akitoshi Ueda1, Koh-suke Aoyanagi4, Yoshihide Kozai, Masayoshi Utashima8, Yoshito Niwa14, Jun'ichi Yokoyama14, Nobuyuki Tanaka1, Akito Araya14 

614 citations

Journal ArticleDOI
01 Jan 1889

595 citations