Author

# Ingo Peschel

Other affiliations: Max Planck Society, Harvard University

Bio: Ingo Peschel is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Quantum entanglement & Ising model. The author has an hindex of 41, co-authored 116 publications receiving 7062 citations. Previous affiliations of Ingo Peschel include Max Planck Society & Harvard University.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, the reduced density matrices of fermionic and bosonic lattice systems were determined from the properties of the correlation functions, which is the simplest way to these quantities which are used in the density-matrix renormalization group method.

Abstract: It is shown that for solvable fermionic and bosonic lattice systems, the reduced density matrices can be determined from the properties of the correlation functions. This provides the simplest way to these quantities which are used in the density-matrix renormalization group method.

899 citations

••

TL;DR: In this paper, a relationship between the Baxter model in two dimensions and the Luttinger model in one was constructed, and the relationship was used to calculate critical exponents for the Baxter models from appropriate Lutteringer-model correlation functions.

Abstract: We construct a relationship between the Baxter model in two dimensions and the Luttinger model in one, and use it to calculate critical exponents for the Baxter model from appropriate Luttinger-model correlation functions. An important part of this work involves the generalization of the Jordan-Wigner transformation to provide a representation for continuum spin operators. With this generalization, we are also able to calculate spin correlation functions for a continuum generalization of the spin-\textonehalf{} Heisenberg-Ising chain. We discuss the difference between the continuum and discrete lattice models, and with the help of a new scaling law, use previous results for the Baxter model to calculate new exponents for the Baxter and Heisenberg-Ising model on a lattice.

589 citations

••

TL;DR: In this paper, the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state are reviewed for various one-dimensional situations, including also the evolution after global or local quenches.

Abstract: We review the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state. Their basic feature is that they have a thermal form and thus lead to a quasi-thermodynamic problem with a certain free-particle Hamiltonian. We discuss the derivation of this result, the character of the Hamiltonian and its eigenstates, the single-particle spectra and the full spectra, the resulting entanglement and in particular the entanglement entropy. This is done for various one- and two-dimensional situations, including also the evolution after global or local quenches.

520 citations

••

TL;DR: In this article, the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state are reviewed for various one-dimensional situations, including also the evolution after global or local quenches.

Abstract: We review the properties of reduced density matrices for free fermionic or bosonic many-particle systems in their ground state. Their basic feature is that they have a thermal form and thus lead to a quasi-thermodynamic problem with a certain free-particle Hamiltonian. We discuss the derivation of this result, the character of the Hamiltonian and its eigenstates, the single-particle spectra and the full spectra, the resulting entanglement and in particular the entanglement entropy. This is done for various one- and two-dimensional situations, including also the evolution after global or local quenches.

450 citations

••

TL;DR: In this paper, the single-particle spectral density, susceptibility near the Kohn anomaly, and pair propagator for a one-dimensional interacting-electron gas were derived for the Luttinger or Tomonage model.

Abstract: We compute the single-particle spectral density, susceptibility near the Kohn anomaly, and pair propagator for a one-dimensional interacting-electron gas. With an attractive interaction, the pair propagator is divergent in the zero-temperature limit and the Kohn singularity is removed. For repulsive interactions, the Kohn singularity is stronger than the free-particle case and the pair propagator is finite. The low-temperature behavior of the interacting system is not consistent with the usual Ginzburg-Landau functional because the frequency, temperature, and momentum dependences are characterized by power-law behavior with the exponent dependent on the interaction strength. Similarly, the enrgy dependence of the single-particle spectral density obeys a power law whose exponent depends on the interaction and exhibits no quasiparticle character. Our calculations are exact for the Luttinger or Tomonage model of the one-dimensional interacting system.

439 citations

##### Cited by

More filters

••

TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.

Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

••

TL;DR: The renormalization group theory has been applied to a variety of dynamic critical phenomena, such as the phase separation of a symmetric binary fluid as mentioned in this paper, and it has been shown that it can explain available experimental data at the critical point of pure fluids, and binary mixtures, and at many magnetic phase transitions.

Abstract: An introductory review of the central ideas in the modern theory of dynamic critical phenomena is followed by a more detailed account of recent developments in the field. The concepts of the conventional theory, mode-coupling, scaling, universality, and the renormalization group are introduced and are illustrated in the context of a simple example---the phase separation of a symmetric binary fluid. The renormalization group is then developed in some detail, and applied to a variety of systems. The main dynamic universality classes are identified and characterized. It is found that the mode-coupling and renormalization group theories successfully explain available experimental data at the critical point of pure fluids, and binary mixtures, and at many magnetic phase transitions, but that a number of discrepancies exist with data at the superfluid transition of $^{4}\mathrm{He}$.

4,980 citations

••

TL;DR: In this paper, the authors present an investigation of the massless, two-dimentional, interacting field theories and their invariance under an infinite-dimensional group of conformal transformations.

4,595 citations

••

TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.

Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

••

TL;DR: In this article, a systematic study of entanglement entropy in relativistic quantum field theory is carried out, where the von Neumann entropy is defined as the reduced density matrix ρA of a subsystem A of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, and the results are verified for a free massive field theory.

Abstract: We carry out a systematic study of entanglement entropy in relativistic quantum field theory. This is defined as the von Neumann entropy SA = −Tr ρAlogρA corresponding to the reduced density matrix ρA of a subsystem A. For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, we re-derive the result of Holzhey et al when A is a finite interval of length in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length ξ is large but finite, we show that , where is the number of boundary points of A. These results are verified for a free massive field theory, which is also used to confirm a scaling ansatz for the case of finite size off-critical systems, and for integrable lattice models, such as the Ising and XXZ models, which are solvable by corner transfer matrix methods. Finally the free field results are extended to higher dimensions, and used to motivate a scaling form for the singular part of the entanglement entropy near a quantum phase transition.

3,029 citations