scispace - formally typeset
Search or ask a question
Author

Ingolf Lehmann

Bio: Ingolf Lehmann is an academic researcher from Dresden University of Technology. The author has contributed to research in topics: Axial compressor & Vortex. The author has an hindex of 3, co-authored 4 publications receiving 298 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the rotational instability (RI) is observed in axial flow fans, centrifugal compressors as well as in low-speed and high-speed axial compressors.
Abstract: Rotating instabilities (RI) have been observed in axial flow fans, centrifugal compressors as well as in low-speed and high-speed axial compressors. They are responsible for the excitation of high amplitude rotor blade vibrations and noise generation. This flow phenomenon moves relative to the rotor blades and causes periodic vortex separations at the blade tips and an axial reversed flow through the tip clearance of the rotor blades.The paper describes experimental investigations of RI in the Dresden Low-Speed Research Compressor (LSRC). The objective is to show that the fluctuation of the blade tip vortex is responsible for the origination of this flow phenomenon.RI have been found at operating points near the stability limit of the compressor with relatively large tip clearance of the rotor blades. The application of time-resolving sensors in both fixed and rotating frame of reference enables a detailed description of the circumferential structure and the spatial development of this unsteady flow phenomenon, which is limited to the blade tip region.Laser-Doppler-Anemometry (LDA) within the rotor blade passages and within the tip clearance as well as unsteady pressure measurements on the rotor blades show the structure of the blade tip vortex.It will be shown that the periodical interaction of the blade tip vortex of one blade with the flow at the adjacent blade is responsible for the generation of a rotating structure with high mode orders, termed as rotating instability (RI).Copyright © 2000 by ASME

275 citations

Journal ArticleDOI
TL;DR: In this article, the results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented.
Abstract: In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part II of the paper the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes the tip clearance vortices are separated into different segments. Along the mean vortex trajectory these parts can be characterised by alternating patches of higher and lower velocity and flow turning or subsequent counterrotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.Copyright © 2007 by ASME

46 citations

Proceedings ArticleDOI
TL;DR: In this article, the results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented.
Abstract: In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part I of the paper the flow field at midspan of the rotor blade row will be discussed. Different aspects of the blade row interaction process are considered for the design point and an operating point near the stability limit. The periodical unsteady blade-to-blade velocity field is dominated by the incoming stator wakes, while the potential effect of the stator blades is of minor influence. The inherent vortex structures and the negative jet effect, which is coupled to the wake appearance, are clearly resolved. Furthermore the time-resolved profile pressure distribution of the rotor blades is discussed. Although the negative jet effect within the rotor blade passage is very pronounced the rotor blade pressure distribution is nearly independent from the convectively propagating chopped stator wakes.© 2007 ASME

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out based on unsteady simulations.
Abstract: A computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out. Based on unsteady simulations, we hypothesize there are two conditions necessary for the formation of spike disturbances, both of which are linked to the tip clearance flow. One is that the interface between the tip clearance and oncoming flows becomes parallel to the leading-edge plane. The second is the initiation of backflow, stemming from the fluid in adjacent passages, at the trailing-edge plane. The two criteria also imply a circumferential length scale for spike disturbances. The hypothesis and scenario developed are consistent with numerical simulations and experimental observations of axial compressor stall inception. A comparison of calculations for multiple blades with those for single passages also allows statements to be made about the utility of single passage computations as a descriptor of compressor stall.

393 citations

Journal ArticleDOI
TL;DR: In this article, a semi-historical look at some of these fields of study (stall, surge, active control, rotating instabilities etc.) and examine the ideas which underpin each topic are presented.
Abstract: Work on rotating stall and its related disturbances has been in progress since the Second World War. During this period, certain ‘hot topics’ have come to the fore — mostly in response to pressing problems associated with new engine designs. This paper will take a semi-historical look at some of these fields of study (stall, surge, active control, rotating instabilities etc.) and will examine the ideas which underpin each topic. Good progress can be reported, but the paper will not be an unrestricted celebration of our successes because, after 75 years of research, we are still unable to predict the stalling behaviour of a new compressor or to contribute much to the design a more stall resistant machine. Looking forward from where we are today, it is clear that future developments will come from CFD in the form of better performance predictions, better flow modelling and improved interpretation of experimental results. It is also clear that future experimental work will be most effective when focussed on real compressors with real problems — such as stage matching, large tip clearances, eccentricity and service life degradation. Today’s topics of interest are mostly associated with compressible effects and so further research will require more high speed testing.Copyright © 2015 by ASME

238 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and numerical investigation aimed at understanding the mechanisms of rotating instabilities in a low speed axial flow compressor was carried out with high-resolution pressure measurements at different clearances.
Abstract: This paper reports on an experimental and numerical investigation aimed at understanding the mechanisms of rotating instabilities in a low speed axial flow compressor. The phenomena of rotating instabilities in the current compressor were first identified with an experimental study. Then, an unsteady numerical method was applied to confirm the phenomena and to interrogate the physical mechanisms behind them. The experimental study was conducted with high-resolution pressure measurements at different clearances, employing a double phase-averaging technique. The numerical investigation was performed with an unsteady 3-D Navier-Stokes method that solves for the entire blade row. The current study reveals that a vortex structure forms near the leading edge plane. This vortex is the result of interactions among the classical tip-clearance flow, axially reversed endwall flow, and the incoming flow. The vortex travels from the suction side to the pressure side of the passage at roughly half of the rotor speed. The formation and movement of this vortex seem to be the main causes of unsteadiness when rotating instability develops. Due to the nature of this vortex, the classical tip-clearance flow does not spill over into the following blade passage. This behavior of the tip-clearance flow is why the compressor operates in a stable mode even with the rotating instability, unlike traditional rotating stall phenomena.Copyright © 2001 by ASME

214 citations

Journal ArticleDOI
TL;DR: In this paper, the tip-leakage flow in a turbomachinery cascade is studied using large-eddy simulation with particular emphasis on understanding the underlying mechanisms for viscous losses in the vicinity of the tip gap.
Abstract: The tip-leakage flow in a turbomachinery cascade is studied using large-eddy simulation with particular emphasis on understanding the underlying mechanisms for viscous losses in the vicinity of the tip gap. Systematic and detailed analysis of the mean flow field and turbulence statistics has been made in a linear cascade with a moving endwall. Gross features of the tip-leakage vortex, tip-separation vortices, and blade wake have been revealed by investigating their revolutionary trajectories and mean velocity fields. The tip-leakage vortex is identified by regions of significant streamwise velocity deficit and high streamwise and pitchwise vorticity magnitudes. The tip-leakage vortex and the tip-leakage jet which is generated by the pressure difference between the pressure and suction sides of the blade tip are found to produce significant mean velocity gradients along the spanwise direction, leading to the production of vorticity and turbulent kinetic energy. The velocity gradients are the major causes for viscous losses in the cascade endwall region. The present analysis suggests that the endwall viscous losses can be alleviated by changing the direction of the tip-leakage flow such that the associated spanwise derivatives of the mean streamwise and pitchwise velocity components are reduced.

156 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the structures that produce a spike-type route to rotating stall and explain the physical mechanism for their formation based on numerical simulations, complemented and corroborated by experiments.
Abstract: In this paper we describe the structures that produce a spike-type route to rotating stall and explain the physical mechanism for their formation. The descriptions and explanations are based on numerical simulations, complemented and corroborated by experiments. It is found that spikes are caused by a loss of pressure rise capability in the rotor tip region, due to flow separation resulting from high incidence. The separation gives rise to shedding of vorticity from the leading edge and the consequent formation of vortices that span between the suction surface and the casing. As seen in the rotor frame of reference, near the casing the vortex convects toward the pressure surface of the adjacent blade. The approach of the vortex to the adjacent blade triggers a separation on that blade so the structure propagates. The above sequence of events constitutes a spike. The simulations show shed vortices over a range of tip clearances including zero. The implication is that they are not part of the tip clearance vortex, in accord with recent experimental findings. Evidence is presented for the existence of these vortex structures immediately prior to spike-type stall and, more strongly, for their causal connection with spike-type stall inception. Data from several compressors are shown to reproduce the pressure and velocity signature of the spike-type stall inception seen in the simulations.Copyright © 2012 by ASME

155 citations