scispace - formally typeset
Search or ask a question
Author

Ingrid Rosendahl

Bio: Ingrid Rosendahl is an academic researcher from University of Bonn. The author has contributed to research in topics: Manure & Bulk soil. The author has an hindex of 13, co-authored 15 publications receiving 866 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that household level pesticide management remains suboptimal in the Mekong Delta and co-occurrence of several pesticides in the samples indicate a considerable chronic exposure of biota and humans to pesticides.

192 citations

Journal ArticleDOI
TL;DR: Differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.
Abstract: Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.

150 citations

Journal ArticleDOI
02 Jul 2015-PLOS ONE
TL;DR: The currently measured concentrations of the investigated antibiotics are unlikely to cause immediate risks to the aquatic environment, yet the persistence of these antibiotics is of concern and might lead to chronic exposure of aquatic organisms as well as humans.
Abstract: The Mekong Delta in Vietnam has seen a rapid development and intensification of aquaculture in the last decades, with a corresponding widespread use of antibiotics. This study provides information on current antibiotic use in freshwater aquaculture, as well as on resulting antibiotic concentrations in the aquatic environment of the Mekong Delta. Two major production steps, fish hatcheries and mature fish cultivation, were surveyed (50 fish farm interviews) for antibiotic use. Different water sources, including surface water, groundwater and piped water (164 water samples) were systematically screened for antibiotic residues. To better understand antibiotic fate under tropical conditions, the dissipation behavior of selected antibiotics in the aquatic environment was investigated for the first time in mesocosm experiments. None of the investigated antibiotics were detected in groundwater and piped water samples. Surface water, which is still often used for drinking and domestic purposes by local populations, contained median concentrations of 21 ng L-1 sulfamethoxazole (SMX), 4 ng L-1 sulfadiazine (SDZ), 17 ng L-1 trimethoprim (TRIM), and 12 ng L-1 enrofloxacin (ENRO). These concentrations were lower than the predicted no effect concentrations (PNECs) and minimum inhibitory concentrations (MICs), suggesting limited antibiotic-related risk to aquatic ecosystems in the monitored systems. The dissipation half-lives of the studied antibiotics ranged from <1 to 44 days, depending on the availability of sunlight and sediment. Among the studied antibiotics TRIM was the most persistent in water systems. TRIM was not susceptible to photodegradation, while the dissipation of ENRO and SDZ was influenced by photolysis. The recorded dissipation models gave good predictions of the occurrence and concentrations of TRIM, ENRO and SDZ in surface water. In summary, the currently measured concentrations of the investigated antibiotics are unlikely to cause immediate risks to the aquatic environment, yet the persistence of these antibiotics is of concern and might lead to chronic exposure of aquatic organisms as well as humans.

129 citations

Journal ArticleDOI
TL;DR: The results showed that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited, and biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge.

82 citations

Journal ArticleDOI
TL;DR: Difloxacin was hardly (bio)accessible and was very persistent under all conditions studied (dissipation half-life in bulk soil, >217 d), rapidly forming nonextractable residues and dissipation was accelerated in soil surrounding plant roots.
Abstract: The environmental risks caused by the use of fluoroquinolone antibiotics in human therapeutics and animal husbandry are associated with their persistence and (bio)accessibility in soil. To assess these aspects, we administered difloxacin to pigs and applied the contaminated manure to soil. We then evaluated the dissipation and sequestration of difloxacin in soil in the absence and presence of plants within a laboratory trial, a mesocosm trial, and a field trial. A sequential extraction yielded antibiotic fractions of differing binding strength. We also assessed the antibiotic's effects on nitrogen turnover in soil (potential nitrification and denitrification). Difloxacin was hardly (bio)accessible and was very persistent under all conditions studied (dissipation half-life in bulk soil, >217 d), rapidly forming nonextractable residues. Although varying environmental conditions did not affect persistence, dissipation was accelerated in soil surrounding plant roots. Effects on nitrogen turnover were limited due to the compound's strong binding and small (bio)accessibility despite its persistence.

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment are discussed.
Abstract: Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.

1,495 citations

Journal ArticleDOI
TL;DR: It is suggested that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because it is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals.
Abstract: Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.

919 citations

Journal ArticleDOI
TL;DR: The patterns of bacterial community and antibiotic resistance genes (ARGs) in a long-term field experiment were investigated and it was suggested that bacterial community shifts, rather than MGEs, is the major driver shaping the antibiotic resistome.

543 citations

Journal ArticleDOI
TL;DR: It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of the authors' poor fundamental understanding of many of the key issues and the science to inform policy is lacking and this needs to be addressed.
Abstract: The environment is increasingly being recognised for the role it might play in the global spread of clinically-relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: 1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and 2) AMR Action Plans are deficient, in part, because the science to inform policy is lacking and this needs to be addressed.

525 citations

Journal ArticleDOI
TL;DR: This review shows that fluoroquinolone antibiotics have a wide spread use and that their behavior during wastewater treatment is complex with an incomplete removal, and that these biorecalcitrant compounds are present in different environmental matrices at potentially hazardous concentrations for the aquatic environment.

522 citations