scispace - formally typeset
Search or ask a question
Author

Ingvars Birznieks

Bio: Ingvars Birznieks is an academic researcher from University of New South Wales. The author has contributed to research in topics: Population & Hypertonic saline. The author has an hindex of 17, co-authored 61 publications receiving 1664 citations. Previous affiliations of Ingvars Birznieks include Neuroscience Research Australia & University of Sydney.


Papers
More filters
Journal ArticleDOI
TL;DR: The sequence in which different afferents initially discharge in response to mechanical fingertip events provides information about these events faster than the fastest possible rate code and fast enough to account for the use of tactile signals in natural manipulation.
Abstract: It is generally assumed that primary sensory neurons transmit information by their firing rates. However, during natural object manipulations, tactile information from the fingertips is used faster than can be readily explained by rate codes. Here we show that the relative timing of the first impulses elicited in individual units of ensembles of afferents reliably conveys information about the direction of fingertip force and the shape of the surface contacting the fingertip. The sequence in which different afferents initially discharge in response to mechanical fingertip events provides information about these events faster than the fastest possible rate code and fast enough to account for the use of tactile signals in natural manipulation.

585 citations

Journal ArticleDOI
TL;DR: It is concluded that tactile afferents from the whole terminal phalanx potentially contribute to the encoding of direction of fingertip forces similar to those that occur when subjects manipulate objects under natural conditions.
Abstract: In most manipulations, we use our fingertips to apply time-varying forces to the target object in controlled directions. Here we used microneurography to assess how single tactile afferents encode the direction of fingertip forces at magnitudes, rates, and directions comparable to those arising in everyday manipulations. Using a flat stimulus surface, we applied forces to a standard site on the fingertip while recording impulse activity in 196 tactile afferents with receptive fields distributed over the entire terminal phalanx. Forces were applied in one of five directions: normal force and forces at a 20 degrees angle from the normal in the radial, distal, ulnar, or proximal directions. Nearly all afferents responded, and the responses in most slowly adapting (SA)-I, SA-II, and fast adapting (FA)-I afferents were broadly tuned to a preferred direction of force. Among afferents of each type, the preferred directions were distributed in all angular directions with reference to the stimulation site, but not uniformly. The SA-I population was biased for tangential force components in the distal direction, the SA-II population was biased in the proximal direction, and the FA-I population was biased in the proximal and radial directions. Anisotropic mechanical properties of the fingertip and the spatial relationship between the receptive field center of the afferent and the stimulus site appeared to influence the preferred direction in a manner dependent on afferent type. We conclude that tactile afferents from the whole terminal phalanx potentially contribute to the encoding of direction of fingertip forces similar to those that occur when subjects manipulate objects under natural conditions.

320 citations

Journal ArticleDOI
TL;DR: It is proposed that the sensor mechanics should encourage incipient slip, by allowing parts of the sensor to slip while other parts remain stuck, and that instrumentation should measure displacement and deformation to complement conventional force, pressure, and vibration tactile sensing.
Abstract: Humans can handle and manipulate objects with ease; however, human dexterity has yet to be matched by artificial systems. Receptors in our fingers and hands provide essential tactile information to the motor control system during dexterous manipulation such that the grip force is scaled to the tangential forces according to the coefficient of friction. Likewise, tactile sensing will become essential for robotic and prosthetic gripping performance as applications move toward unstructured environments. However, most existing research ignores the need to sense the frictional properties of the sensor–object interface, which (along with contact forces and torques) is essential for finding the minimum grip force required to securely grasp an object. Here, we review this problem by surveying the field of tactile sensing from the perspective that sensors should: 1) detect gross slip (to adjust the grip force); 2) detect incipient slip (dependent on the frictional properties of the sensor–object interface and the geometries and mechanics of the sensor and the object) as an indication of grip security; or 3) measure friction on contact with an object and/or following a gross or incipient slip event while manipulating an object. Recommendations are made to help focus future sensor design efforts toward a generalizable and practical solution to sense, and hence control grip security. Specifically, we propose that the sensor mechanics should encourage incipient slip, by allowing parts of the sensor to slip while other parts remain stuck, and that instrumentation should measure displacement and deformation to complement conventional force, pressure, and vibration tactile sensing.

142 citations

Journal ArticleDOI
TL;DR: It is concluded that recognition of such shapes takes advantage of signals originating from tactile afferents distributed over the entire terminal phalanx, and that both the direction of fingertip forces and the curvatures of objects contacted during natural manipulations influence the Afferents' responses.
Abstract: Influences of object shape on responses in human tactile afferents under conditions characteristic for manipulation

117 citations

Journal ArticleDOI
TL;DR: It is concluded that signals in the population of SA-IInail afferents terminating in the nail walls contain vectorial information about fingertip forces.
Abstract: There are clusters of slowly adapting (SA) mechanoreceptors in the skin folds bordering the nail. These "SA-IInail" afferents, which constitute nearly one fifth of the tactile afferents innervating ...

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
Abstract: Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

1,681 citations

Journal ArticleDOI
TL;DR: Analysis of signals in tactile afferent neurons and central processes in humans reveals how contact events are encoded and used to monitor and update task performance.
Abstract: During object manipulation tasks, the brain selects and implements action-phase controllers that use sensory predictions and afferent signals to tailor motor output to the physical properties of the objects involved. Analysis of signals in tactile afferent neurons and central processes in humans reveals how contact events are encoded and used to monitor and update task performance.

1,569 citations

Journal ArticleDOI
TL;DR: Tactile sensing, focused to fingertips and hands until past decade or so, has now been extended to whole body, even though many issues remain open, and various system issues that keep tactile sensing away from widespread utility are discussed.
Abstract: Starting from human ?sense of touch,? this paper reviews the state of tactile sensing in robotics. The physiology, coding, and transferring tactile data and perceptual importance of the ?sense of touch? in humans are discussed. Following this, a number of design hints derived for robotic tactile sensing are presented. Various technologies and transduction methods used to improve the touch sense capability of robots are presented. Tactile sensing, focused to fingertips and hands until past decade or so, has now been extended to whole body, even though many issues remain open. Trend and methods to develop tactile sensing arrays for various body sites are presented. Finally, various system issues that keep tactile sensing away from widespread utility are discussed.

1,414 citations

Book
22 Sep 2014
TL;DR: This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience.
Abstract: What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study.

942 citations