scispace - formally typeset
Search or ask a question
Author

Inha Heo

Bio: Inha Heo is an academic researcher from Seoul National University. The author has contributed to research in topics: Dicer & Argonaute. The author has an hindex of 14, co-authored 15 publications receiving 5869 citations. Previous affiliations of Inha Heo include Delft University of Technology & Utrecht University.

Papers
More filters
Journal ArticleDOI
02 Jun 2006-Cell
TL;DR: DGCR8 may function as the molecular anchor that measures the distance from the dsRNA-ssRNA junction and facilitate the prediction of novel microRNAs and will assist in the rational design of small hairpin RNAs for RNA interference.

1,640 citations

Journal ArticleDOI
TL;DR: The CRISPR/Cas9 genome editing system is used to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients and the corrected allele is expressed and fully functional as measured in clonally expanded organoids.

1,226 citations

Journal ArticleDOI
Inha Heo1, Chirlmin Joo1, Jun Cho1, Minju Ha1, Jinju Han1, V. Narry Kim1 
TL;DR: The Lin28-mediated downregulation of let-7 may play a key role in development, stem cell programming, and tumorigenesis and is provided for the posttranscriptional regulation of miRNA biogenesis by Lin28 which is highly expressed in undifferentiated cells and certain cancer cells.

946 citations

Journal ArticleDOI
21 Aug 2009-Cell
TL;DR: The role of TUT4 and Lin28 are uncovers as specific suppressors of miRNA biogenesis, which has implications for stem cell research and cancer biology.

767 citations

Journal ArticleDOI
TL;DR: It is concluded that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.
Abstract: Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.

569 citations


Cited by
More filters
Journal ArticleDOI
28 Nov 2014-Science
TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Abstract: The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.

4,774 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations

Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.

4,361 citations

Journal ArticleDOI
TL;DR: Small non-coding RNAs that function as guide molecules in RNA silencing are involved in nearly all developmental and pathological processes in animals and their dysregulation is associated with many human diseases.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins--Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.

4,256 citations

Journal ArticleDOI
TL;DR: This work has shown that the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein–protein and protein–RNA interactions has an important role in the context-specific functions of miRNAs.
Abstract: MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are ~21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.

4,123 citations