scispace - formally typeset
Search or ask a question
Author

Insil Park

Bio: Insil Park is an academic researcher from Pacific Biosciences. The author has contributed to research in topics: Polymerase & Single molecule real time sequencing. The author has an hindex of 8, co-authored 13 publications receiving 3709 citations.

Papers
More filters
Journal ArticleDOI
02 Jan 2009-Science
TL;DR: Single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs) are presented.
Abstract: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.

3,346 citations

Patent
21 Dec 2006
TL;DR: In this article, compositions of polymerases with features for improving entry of nucleotide analogues into active site regions and for coordinating with the nucleotide analogue in the active site region are provided.
Abstract: Compositions that include polymerases with features for improving entry of nucleotide analogues into active site regions and for coordinating with the nucleotide analogues in the active site region are provided. Methods of making the polymerases and of using the polymerases in sequencing and DNA replication and amplification as well as kinetic models of polymerase activity and computer-implemented methods of using the models are also provided.

139 citations

Journal ArticleDOI
TL;DR: Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.
Abstract: We demonstrate the efficient synthesis of DNA with complete replacement of the four deoxyribonucleoside triphosphate (dNTP) substrates with nucleotides carrying fluorescent labels. A different, spectrally separable fluorescent dye suitable for single molecule fluorescence detection was conjugated to each of the four dNTPs via linkage to the terminal phosphate. Using these modified nucleotides, DNA synthesis by φ29 DNA polymerase was observed to be processive for products thousands of bases in length, with labeled nucleotide affinities and DNA polymerization rates approaching unmodified dNTP levels. Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.

120 citations

Patent
30 Mar 2009
TL;DR: In this article, two slow step systems can be produced by selecting the appropriate polymerase enzyme, reaction conditions including cofactors, and polymerase reaction substrates including the primed template and nucleotides.
Abstract: Compositions, kits, methods and systems for nucleotide sequencing comprising producing polymerase reactions that exhibit two kinetically observable steps within an observable phase of the polymerase reaction. Two slow step systems can be produced, for example, by selecting the appropriate polymerase enzyme, polymerase reaction conditions including cofactors, and polymerase reaction substrates including the primed template and nucleotides.

97 citations

Patent
30 Mar 2009
TL;DR: In this paper, the branching fractions of modified recombinant polymerases are compared to the branching fraction of the parent polymerases from which they were derived, or branching fractions that are less than about 25% for a phosphate-labeled nucleotide analog.
Abstract: Provided are compositions comprising modified recombinant polymerases that exhibit branching fractions that are less than the branching fractions of the polymerases from which they were derived, or branching fractions that are less than about 25% for a phosphate-labeled nucleotide analog. Also provided are compositions comprising modified recombinant polymerases that exhibit closed polymerase/DNA complexes with increased stability relative to the parental polymerases. Also provided are compositions comprising modified recombinant polymerases that exhibit decreased rate constants relative to the parental polymerases. Provided are methods for generating polymerases with the aforementioned phenotypes. Provided are methods of using such polymerases to make a DNA or to sequence a DNA template.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

7,023 citations

Journal ArticleDOI
TL;DR: This protocol provides a workflow for genome-independent transcriptome analysis leveraging the Trinity platform and presents Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes.
Abstract: De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.

6,369 citations

Journal ArticleDOI
TL;DR: The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Abstract: 16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

5,346 citations

Journal ArticleDOI
TL;DR: Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences, is presented, demonstrating that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences or Oxford Nanopore technologies.
Abstract: Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.

4,806 citations