scispace - formally typeset
Search or ask a question
Author

Ioanna Papandreou

Other affiliations: Stanford University
Bio: Ioanna Papandreou is an academic researcher from Ohio State University. The author has contributed to research in topics: Glycolysis & Tumor microenvironment. The author has an hindex of 20, co-authored 32 publications receiving 4208 citations. Previous affiliations of Ioanna Papandreou include Stanford University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown by genetic means that HIF-1-dependent block to oxygen utilization results in increased oxygen availability, decreased cell death when total oxygen is limiting, and reduced cell death in response to the hypoxic cytotoxin tirapazamine.

1,960 citations

Journal ArticleDOI
27 Jan 2011-Blood
TL;DR: The identification of STF-083010, a novel small-molecule inhibitor of Ire1, supports the hypothesis that the Ire1-XBP1 axis is a promising target for anticancer therapy, especially in the context of MM.

428 citations

Journal ArticleDOI
TL;DR: Novel molecular strategies designed to interfere with the activities of these gene products are being devised as ways to overcome the physiologic barriers in the tumor to standard anticancer therapies.
Abstract: It is widely recognized that the vasculature of the tumor is inadequate to meet the demands of the growing mass. The malformed vasculature is at least in part responsible for regions of the tumor that are hypoxic, acidotic, and exposed to increased interstitial fluid pressure. These unique aspects of the tumor microenvironment have been shown to act as barriers to conventional chemotherapy or radiation-based therapies. It now seems that while the vasculature initiates these tumor-specific conditions, the cells within the tumor respond to these stresses and add to the unique solid tumor physiology. Gene expression changes have been reported in the tumor for vascular endothelial growth factor, carbonic anhydrase IX, and pyruvate dehydrogenase kinase 1. The activity of these gene products then influences the tumor physiology through alterations in vascular permeability and interstitial fluid pressure, extracellular acidosis, and mitochondrial oxygen consumption and hypoxia, respectively. Novel molecular strategies designed to interfere with the activities of these gene products are being devised as ways to overcome the physiologic barriers in the tumor to standard anticancer therapies.

329 citations

Journal ArticleDOI
TL;DR: Findings suggest that the autophagic degradation of cellular macromolecules contributes to the energetic balance governed by AMPK, and that suppression of autophagy in transformed cells can increase both resistance to hypoxic stress and tumorigenicity.
Abstract: Macroautophagy (called autophagy hereafter) is a catabolic process activated by various types of stress, most notably by nutrient deprivation. The autophagic degradation of intracellular macromolecules provides metabolic support for the cell; however, this physiological process can also initiate a form of cell death (type 2 programmed cell death). Here we report that oxygen deprivation can activate the autophagic pathway in human cancer cell lines. We observed that hypoxia induced distinct cellular changes characteristic of autophagy such as an increase in cytoplasmic acidic vesicles, and processing and cellular localization of microtubule-associated protein-1 light chain 3. Oxygen deprivation-induced autophagy did not require nutrient deprivation, hypoxia-inducible factor-1 (HIF-1) activity, or expression of the HIF-1 target gene BNIP3 (Bcl-2 adenovirus E1a nineteen kilodalton interacting protein 3) or BNIP3L (BNIP3 like protein). Hypoxia-induced autophagy involved the activity of 5'-AMP-activated protein kinase (AMPK). Finally, we determined that cells lacking the autophagy gene ATG5 were unable to activate the autophagic machinery in hypoxia, had decreased oxygen consumption and increased glucose uptake under hypoxia, had increased survival in hypoxic environments, and exhibited accelerated growth as xenografted tumors. Together, these findings suggest that the autophagic degradation of cellular macromolecules contributes to the energetic balance governed by AMPK, and that suppression of autophagy in transformed cells can increase both resistance to hypoxic stress and tumorigenicity.

319 citations

Journal ArticleDOI
TL;DR: It is suggested that Rcf1 is a member of an evolutionarily conserved protein family that acts to promote respiratory supercomplex assembly and activity.

205 citations


Cited by
More filters
Journal ArticleDOI
25 Nov 2011-Science
TL;DR: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum, where they fold and assemble, and only properly assembled proteins advance from the ER to the cell surface.
Abstract: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.

4,468 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
TL;DR: This Perspective has organized known cancer-associated metabolic changes into six hallmarks: deregulated uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, useof glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the microenvironment.

3,565 citations

Journal ArticleDOI
TL;DR: This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types and regulates regulation of these fluxes by cellular mediators of signal transduction and gene expression.

3,526 citations

Journal ArticleDOI
TL;DR: The current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagic for cell survival and homeostasis are presented.
Abstract: Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.

3,249 citations