scispace - formally typeset
Search or ask a question
Author

Ioannis Z. Emiris

Bio: Ioannis Z. Emiris is an academic researcher from National and Kapodistrian University of Athens. The author has contributed to research in topics: Polynomial & Polytope. The author has an hindex of 34, co-authored 202 publications receiving 3663 citations. Previous affiliations of Ioannis Z. Emiris include French Institute for Research in Computer Science and Automation & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: A new and efficient algorithm for computing the sparse resultant of a system of n + 1 polynomial equations in n unknowns that produces a matrix whose entries are coefficients of the given polynomials and is typically smaller than the matrices obtained by previous approaches.

181 citations

Journal ArticleDOI
TL;DR: This survey unifies the existing work on resultants, with emphasis on constructing matrices that generalize the classic matrices named after Sylvester, Bezout and Macaulay, and presents the properties of the different matrix formulations.

139 citations

Journal ArticleDOI
TL;DR: In this article, the approximate GCD of two univariate polynomials given with limited accuracy is studied, where the singular values of the Sylvester matrix singular values are used to establish a gap theorem on certain singular values that certifies the maximum degree of the GCD.

127 citations

Book ChapterDOI
TL;DR: The algorithm is the first to present a determinantal formula for arbitrary systems; moreover, its complexity for unmixed systems is polynomial in the resultant degree.
Abstract: We propose a compact formula for the mixed resultant of a system of n+1 sparse Laurent polynomials in n variables. Our approach is conceptually simple and geometric, in that it applies a mixed subdivision to the Minkowski Sum of the input Newton polytopes. It constructs a matrix whose determinant is a non-zero multiple of the resultant so that the latter can be defined as the GCD of n + 1 such determinants. For any specialization of the coefficients there are two methods which use one extra perturbation variable and return the resultant. Our algorithm is the first to present a determinantal formula for arbitrary systems; moreover, its complexity for unmixed systems is polynomial in the resultant degree. Further empirical results suggest that this is the most efficient method to date for sparse elimination.

126 citations

Journal ArticleDOI
TL;DR: This is the first algorithm to handle the general case with complexity polynomial in the resultant degree and simply exponential in n and conjecture its extension to producing an exact rational expression for the sparse resultant.
Abstract: Multivariate resultants generalize the Sylvester resultant of two polynomials and characterize the solvability of a polynomial system. They also reduce the computation of all common roots to a problem in linear algebra. We propose a determinantal formula for the sparse resultant of an arbitrary system of n + 1 polynomials in n variables. This resultant generalizes the classical one and has significantly lower degree for polynomials that are sparse in the sense that their mixed volume is lower than their Bezout number. Our algorithm uses a mixed polyhedral subdivision of the Minkowski sum of the Newton polytopes in order to construct a Newton matrix. Its determinant is a nonzero multiple of the sparse resultant and the latter equals the GCD of at most n + 1 such determinants. This construction implies a restricted version of an effective sparse Nullstellensatz. For an arbitrary specialization of the coefficients, there are two methods that use one extra variable and yield the sparse resultant. This is the first algorithm to handle the general case with complexity polynomial in the resultant degree and simply exponential in n. We conjecture its extension to producing an exact rational expression for the sparse resultant.

119 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations

Posted Content
TL;DR: In this paper, the authors propose a design for k-selection that operates at up to 55% of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5x faster than prior GPU state of the art.
Abstract: Similarity search finds application in specialized database systems handling complex data such as images or videos, which are typically represented by high-dimensional features and require specific indexing structures. This paper tackles the problem of better utilizing GPUs for this task. While GPUs excel at data-parallel tasks, prior approaches are bottlenecked by algorithms that expose less parallelism, such as k-min selection, or make poor use of the memory hierarchy. We propose a design for k-selection that operates at up to 55% of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5x faster than prior GPU state of the art. We apply it in different similarity search scenarios, by proposing optimized design for brute-force, approximate and compressed-domain search based on product quantization. In all these setups, we outperform the state of the art by large margins. Our implementation enables the construction of a high accuracy k-NN graph on 95 million images from the Yfcc100M dataset in 35 minutes, and of a graph connecting 1 billion vectors in less than 12 hours on 4 Maxwell Titan X GPUs. We have open-sourced our approach for the sake of comparison and reproducibility.

1,663 citations