scispace - formally typeset
Search or ask a question
Author

Ioannis Zografopoulos

Bio: Ioannis Zografopoulos is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Computer science & Electric power system. The author has an hindex of 6, co-authored 25 publications receiving 131 citations. Previous affiliations of Ioannis Zografopoulos include Florida A&M University – Florida State University College of Engineering & Florida State University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of the cyber-physical energy systems (CPS) security landscape with an emphasis on CPES, and demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities.
Abstract: Cyber-physical systems (CPS) are interconnected architectures that employ analog and digital components as well as communication and computational resources for their operation and interaction with the physical environment. CPS constitute the backbone of enterprise (e.g., smart cities), industrial (e.g., smart manufacturing), and critical infrastructure (e.g., energy systems). Thus, their vital importance, interoperability, and plurality of computing devices make them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature within the power grid infrastructure, can lead to disastrous consequences. The security of CPES can be enhanced by leveraging testbed capabilities in order to replicate and understand power systems operating conditions, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. Adequately modeling and reproducing the behavior of CPS could be a challenging task. In this paper, we provide a comprehensive overview of the CPS security landscape with an emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models that can be used to evaluate the system’s performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables the system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.

105 citations

Journal ArticleDOI
TL;DR: An attack taxonomy is provided, which takes into consideration the different layers of the IoT stack, i.e., device, infrastructure, communication, and service, and each layer’s designated characteristics, and provides a systematic procedure to categorize attacks based on the affected layer and corresponding impact.
Abstract: Internet of Things (IoT) devices are becoming ubiquitous in our lives, with applications spanning from the consumer domain to commercial and industrial systems. The steep growth and vast adoption of IoT devices reinforce the importance of sound and robust cybersecurity practices during the device development life-cycles. IoT-related vulnerabilities, if successfully exploited can affect, not only the device itself, but also the application field in which the IoT device operates. Evidently, identifying and addressing every single vulnerability is an arduous, if not impossible, task. Attack taxonomies can assist in classifying attacks and their corresponding vulnerabilities. Security countermeasures and best practices can then be leveraged to mitigate threats and vulnerabilities before they emerge into catastrophic attacks and ensure overall secure IoT operation. Therefore, in this paper, we provide an attack taxonomy which takes into consideration the different layers of IoT stack, i.e., device, infrastructure, communication, and service, and each layer’s designated characteristics which can be exploited by adversaries. Furthermore, using nine real-world cybersecurity incidents, that had targeted IoT devices deployed in the consumer, commercial, and industrial sectors, we describe the IoT-related vulnerabilities, exploitation procedures, attacks, impacts, and potential mitigation mechanisms and protection strategies. These (and many other) incidents highlight the underlying security concerns of IoT systems and demonstrate the potential attack impacts of such connected ecosystems, while the proposed taxonomy provides a systematic procedure to categorize attacks based on the affected layer and corresponding impact.

59 citations

Journal ArticleDOI
01 Oct 2020
TL;DR: This study provides a comprehensive review of the most up-to-date machine learning methods for detecting FDIAs against power system SE algorithms.
Abstract: Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber-attacks against power grid monitoring systems. Adversaries can successfully perform FDIAs to manipulate the power system state estimation (SE) by compromising sensors or modifying system data. SE is an essential process performed by the energy management system towards estimating unknown state variables based on system redundant measurements and network topology. SE routines include bad data detection algorithms to eliminate errors from the acquired measurements, e.g. in case of sensor failures. FDIAs can bypass BDD modules to inject malicious data vectors into a subset of measurements without being detected, and thus manipulate the results of the SE process. To overcome the limitations of traditional residual-based BDD approaches, data-driven solutions based on machine learning algorithms have been widely adopted for detecting malicious manipulation of sensor data due to their fast execution times and accurate results. This study provides a comprehensive review of the most up-to-date machine learning methods for detecting FDIAs against power system SE algorithms.

57 citations

Posted Content
16 Aug 2020
TL;DR: In this article, a comprehensive review of the most up-to-date machine learning methods for detecting FDIAs against power system state estimation (SE) algorithms is provided, which is an essential process performed by the Energy Management System (EMS) towards estimating unknown state variables based on system redundant measurements and network topology.
Abstract: Over the last decade, the number of cyberattacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, False Data Injection Attacks (FDIAs) is a class of cyberattacks against power grid monitoring systems. Adversaries can successfully perform FDIAs in order to manipulate the power system State Estimation (SE) by compromising sensors or modifying system data. SE is an essential process performed by the Energy Management System (EMS) towards estimating unknown state variables based on system redundant measurements and network topology. SE routines include Bad Data Detection (BDD) algorithms to eliminate errors from the acquired measurements, e.g., in case of sensor failures. FDIAs can bypass BDD modules to inject malicious data vectors into a subset of measurements without being detected, and thus manipulate the results of the SE process. In order to overcome the limitations of traditional residual-based BDD approaches, data-driven solutions based on machine learning algorithms have been widely adopted for detecting malicious manipulation of sensor data due to their fast execution times and accurate results. This paper provides a comprehensive review of the most up-to-date machine learning methods for detecting FDIAs against power system SE algorithms.

31 citations

Journal ArticleDOI
TL;DR: The impact of denial-of-service (DoS) as well as controller and setpoint modification attacks on a simulated microgrid system are demonstrated and custom-built hardware performance counters (HPCs) are employed as design-for-security (DfS) primitives to detect malicious firmware modifications on MG inverters.

25 citations


Cited by
More filters
Proceedings Article
01 Nov 2016
TL;DR: The use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid.
Abstract: Development in the field of electronics and communication set up new paradigm. The need of making the grid smart is increasing due to environmental constrain and effective use of the available electricity. The use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid.

186 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of the cyber-physical energy systems (CPS) security landscape with an emphasis on CPES, and demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities.
Abstract: Cyber-physical systems (CPS) are interconnected architectures that employ analog and digital components as well as communication and computational resources for their operation and interaction with the physical environment. CPS constitute the backbone of enterprise (e.g., smart cities), industrial (e.g., smart manufacturing), and critical infrastructure (e.g., energy systems). Thus, their vital importance, interoperability, and plurality of computing devices make them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature within the power grid infrastructure, can lead to disastrous consequences. The security of CPES can be enhanced by leveraging testbed capabilities in order to replicate and understand power systems operating conditions, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. Adequately modeling and reproducing the behavior of CPS could be a challenging task. In this paper, we provide a comprehensive overview of the CPS security landscape with an emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models that can be used to evaluate the system’s performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables the system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a deep learning-based intrusion detection paradigm for Industrial Internet of Things (IIoT) with hybrid rule-based feature selection to train and verify information captured from TCP/IP packets was proposed.
Abstract: The Industrial Internet of Things (IIoT) is a recent research area that links digital equipment and services to physical systems. The IIoT has been used to generate large quantities of data from multiple sensors, and the device has encountered several issues. The IIoT has faced various forms of cyberattacks that jeopardize its capacity to supply organizations with seamless operations. Such risks result in financial and reputational damages for businesses, as well as the theft of sensitive information. Hence, several Network Intrusion Detection Systems (NIDSs) have been developed to fight and protect IIoT systems, but the collections of information that can be used in the development of an intelligent NIDS are a difficult task; thus, there are serious challenges in detecting existing and new attacks. Therefore, the study provides a deep learning-based intrusion detection paradigm for IIoT with hybrid rule-based feature selection to train and verify information captured from TCP/IP packets. The training process was implemented using a hybrid rule-based feature selection and deep feedforward neural network model. The proposed scheme was tested utilizing two well-known network datasets, NSL-KDD and UNSW-NB15. The suggested method beats other relevant methods in terms of accuracy, detection rate, and FPR by 99.0%, 99.0%, and 1.0%, respectively, for the NSL-KDD dataset, and 98.9%, 99.9%, and 1.1%, respectively, for the UNSW-NB15 dataset, according to the results of the performance comparison. Finally, simulation experiments using various evaluation metrics revealed that the suggested method is appropriate for IIOT intrusion network attack classification.

66 citations