scispace - formally typeset
Search or ask a question
Author

Irina Rish

Bio: Irina Rish is an academic researcher from Université de Montréal. The author has contributed to research in topics: Computer science & Approximation algorithm. The author has an hindex of 34, co-authored 198 publications receiving 6830 citations. Previous affiliations of Irina Rish include IBM & University of California, Irvine.


Papers
More filters
Irina Rish1
01 Jan 2001
TL;DR: This work analyzes the impact of the distribution entropy on the classification error, showing that low-entropy feature distributions yield good performance of naive Bayes and demonstrates that naive Baye works well for certain nearlyfunctional feature dependencies.
Abstract: The naive Bayes classifier greatly simplify learning by assuming that features are independent given class. Although independence is generally a poor assumption, in practice naive Bayes often competes well with more sophisticated classifiers. Our broad goal is to understand the data characteristics which affect the performance of naive Bayes. Our approach uses Monte Carlo simulations that allow a systematic study of classification accuracy for several classes of randomly generated problems. We analyze the impact of the distribution entropy on the classification error, showing that low-entropy feature distributions yield good performance of naive Bayes. We also demonstrate that naive Bayes works well for certain nearlyfunctional feature dependencies, thus reaching its best performance in two opposite cases: completely independent features (as expected) and functionally dependent features (which is surprising). Another surprising result is that the accuracy of naive Bayes is not directly correlated with the degree of feature dependencies measured as the classconditional mutual information between the features. Instead, a better predictor of naive Bayes accuracy is the amount of information about the class that is lost because of the independence assumption.

2,046 citations

Proceedings Article
01 Jan 2016
TL;DR: In this paper, a deep recurrent convolutional network was proposed to learn robust representations from multi-channel EEG time-series, and demonstrated its advantages in the context of mental load classification task.
Abstract: One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.

456 citations

Proceedings ArticleDOI
24 Aug 2003
TL;DR: An attempt to build a proactive prediction and control system for large clusters using time-series methods, rule-based classification algorithms and Bayesian network models to predict system performance parameters (SARs) with a high degree of accuracy.
Abstract: As the complexity of distributed computing systems increases, systems management tasks require significantly higher levels of automation; examples include diagnosis and prediction based on real-time streams of computer events, setting alarms, and performing continuous monitoring The core of autonomic computing, a recently proposed initiative towards next-generation IT-systems capable of 'self-healing', is the ability to analyze data in real-time and to predict potential problems The goal is to avoid catastrophic failures through prompt execution of remedial actionsThis paper describes an attempt to build a proactive prediction and control system for large clusters We collected event logs containing various system reliability, availability and serviceability (RAS) events, and system activity reports (SARs) from a 350-node cluster system for a period of one year The 'raw' system health measurements contain a great deal of redundant event data, which is either repetitive in nature or misaligned with respect to time We applied a filtering technique and modeled the data into a set of primary and derived variables These variables used probabilistic networks for establishing event correlations through prediction algorithms We also evaluated the role of time-series methods, rule-based classification algorithms and Bayesian network models in event predictionBased on historical data, our results suggest that it is feasible to predict system performance parameters (SARs) with a high degree of accuracy using time-series models Rule-based classification techniques can be used to extract machine-event signatures to predict critical events with up to 70% accuracy

290 citations

Posted Content
TL;DR: In this paper, the authors propose a meta-experience replay (MER) algorithm, which combines experience replay with optimization based meta-learning to learn parameters that make interference based on future gradients less likely.
Abstract: Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.

248 citations

Proceedings Article
27 Sep 2018
TL;DR: In this paper, the authors propose a meta-experience replay (MER) algorithm, which combines experience replay with optimization based meta-learning to learn parameters that make interference based on future gradients less likely.
Abstract: Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI

3,152 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations