scispace - formally typeset
Search or ask a question
Author

Irina Rozovsky

Bio: Irina Rozovsky is an academic researcher from University of Southern California. The author has contributed to research in topics: Glial fibrillary acidic protein & Astrocyte. The author has an hindex of 29, co-authored 39 publications receiving 6845 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is hypothesized that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer's disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Abeta-derived diffusible ligands acting upon particular neural signal transduction pathways.
Abstract: Aβ1–42 is a self-associating peptide whose neurotoxic derivatives are thought to play a role in Alzheimer’s pathogenesis. Neurotoxicity of amyloid β protein (Aβ) has been attributed to its fibrillar forms, but experiments presented here characterize neurotoxins that assemble when fibril formation is inhibited. These neurotoxins comprise small diffusible Aβ oligomers (referred to as ADDLs, for Aβ-derived diffusible ligands), which were found to kill mature neurons in organotypic central nervous system cultures at nanomolar concentrations. At cell surfaces, ADDLs bound to trypsin-sensitive sites and surface-derived tryptic peptides blocked binding and afforded neuroprotection. Germ-line knockout of Fyn, a protein tyrosine kinase linked to apoptosis and elevated in Alzheimer’s disease, also was neuroprotective. Remarkably, neurological dysfunction evoked by ADDLs occurred well in advance of cellular degeneration. Without lag, and despite retention of evoked action potentials, ADDLs inhibited hippocampal long-term potentiation, indicating an immediate impact on signal transduction. We hypothesize that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer’s disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Aβ-derived diffusible ligands acting upon particular neural signal transduction pathways.

3,608 citations

Journal ArticleDOI
TL;DR: This novel activity of slowly sedimenting Aβ may enhance the neurotoxicity of Aβ deposits in AD brains, because soluble complexes have a potential for diffusing to damage distal neurons.

342 citations

Journal ArticleDOI
TL;DR: A mechanism for the protective effects of estrogens on AD is suggested and a link between two important risk factors in the etiology of AD, the apoE ε4 genotype and an estrogen-deficient state is provided.
Abstract: Estrogen replacement therapy appears to delay the onset of Alzheimer’s disease (AD), but the mechanisms for this action are incompletely known. We show how the enhancement of synaptic sprouting by estradiol (E 2 ) in response to an entorhinal cortex (EC) lesion model of AD may operate via an apolipoprotein E (apoE)-dependent mechanism. In wild-type (WT) mice, ovariectomy decreased commissural/associational sprouting to the inner molecular layer of the dentate gyrus, with synaptophysin (SYN) as a marker. E 2 replacement returned SYN in the inner layer to levels of EC-lesioned, ovary-bearing controls and increased the area of compensatory synaptogenesis in the outer molecular layer. In EC-lesioned apoE-knock-out (KO) mice, however, E 2 did not enhance sprouting. We also examined apoJ (clusterin) mRNA, which is implicated in AD by its presence in senile plaques, its transport of Aβ across the blood–brain barrier, and its induction by neurodegenerative lesioning. ApoJ mRNA levels were increased by E 2 replacement in EC-lesioned WT mice but not in apoE-KO mice. These data suggest a mechanism for the protective effects of estrogens on AD and provide a link between two important risk factors in the etiology of AD, the apoE e4 genotype and an estrogen-deficient state. This is also the first evidence that SYN, a presynaptic protein involved in neurotransmitter release, is regulated by E 2 in the adult brain, and that apoE is necessary for the induction of apoJ mRNA by E 2 in brain injury.

244 citations

Journal ArticleDOI
TL;DR: Both microglia and astrocytes originated from aging cerebral cortex maintain in vitro at least some of the activated phenotypes of aging glia that are observed in vivo, which may allow efficient analysis of glial age changes.

241 citations

Journal ArticleDOI
TL;DR: In situ hybridization in combination with cell-specific markers showed that E2 increased apoE mRNA levels in both astrocytes and microglia, suggesting that heterotypic cellular interactions are important in the brain response to estrogens.

238 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
04 Apr 2002-Nature
TL;DR: It is reported that natural oligomers of human Aβ are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell, indicating that synaptotoxic Aβ oligomers can be targeted therapeutically.
Abstract: Although extensive data support a central pathogenic role for amyloid β protein (Aβ) in Alzheimer's disease1, the amyloid hypothesis remains controversial, in part because a specific neurotoxic species of Aβ and the nature of its effects on synaptic function have not been defined in vivo. Here we report that natural oligomers of human Aβ are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell. Cerebral microinjection of cell medium containing these oligomers and abundant Aβ monomers but no amyloid fibrils markedly inhibited hippocampal long-term potentiation (LTP) in rats in vivo. Immunodepletion from the medium of all Aβ species completely abrogated this effect. Pretreatment of the medium with insulin-degrading enzyme, which degrades Aβ monomers but not oligomers, did not prevent the inhibition of LTP. Therefore, Aβ oligomers, in the absence of monomers and amyloid fibrils, disrupted synaptic plasticity in vivo at concentrations found in human brain and cerebrospinal fluid. Finally, treatment of cells with γ-secretase inhibitors prevented oligomer formation at doses that allowed appreciable monomer production, and such medium no longer disrupted LTP, indicating that synaptotoxic Aβ oligomers can be targeted therapeutically.

4,315 citations