scispace - formally typeset
Search or ask a question
Author

Iris A. M. A. Penninckx

Bio: Iris A. M. A. Penninckx is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Arabidopsis & Methyl jasmonate. The author has an hindex of 12, co-authored 15 publications receiving 4728 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.
Abstract: The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247–1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.

1,468 citations

Journal ArticleDOI
TL;DR: It is concluded that both the ethylene and jasmonate signaling pathways need to be triggered concomitantly, and not sequentially, to activate PDF1.2 upon pathogen infection.
Abstract: Activation of the plant defensin gene PDF1.2 in Arabidopsis by pathogens has been shown previously to be blocked in the ethylene response mutant ein2-1 and the jasmonate response mutant coi1-1. In this work, we have further investigated the interactions between the ethylene and jasmonate signal pathways for the induction of this defense response. Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola led to a marked increase in production of jasmonic acid, and this response was not blocked in the ein2-1 mutant. Likewise, A. brassicicola infection caused stimulated emission of ethylene both in wild-type plants and in coi1-1 mutants. However, treatment of either ein2-1 or coi1-1 mutants with methyl jasmonate or ethylene did not induce PDF1.2, as it did in wild-type plants. We conclude from these experiments that both the ethylene and jasmonate signaling pathways need to be triggered concomitantly, and not sequentially, to activate PDF1.2 upon pathogen infection. In support of this idea, we observed a marked synergy between ethylene and methyl jasmonate for the induction of PDF1.2 in plants grown under sterile conditions. In contrast to the clear interdependence of the ethylene and jasmonate pathways for pathogen-induced activation of PDF1.2, functional ethylene and jasmonate signaling pathways are not required for growth responses induced by jasmonate and ethylene, respectively.

1,031 citations

Journal ArticleDOI
TL;DR: The results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response.
Abstract: A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response.

983 citations

Journal ArticleDOI
TL;DR: This work has shown that the plant defense system is regulated through a complex network of various signaling cascades that regulates a multicomponent defense response.

659 citations

Journal ArticleDOI
TL;DR: Results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol, and point to a potential role for terpenoids in the Arabidopsis defensive armory.
Abstract: The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.

205 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens.
Abstract: It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.

3,721 citations

Journal ArticleDOI
TL;DR: The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
Abstract: Inducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.

2,747 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: In this review, taking an evolutionary perspective, important discoveries over the last decade about the plant immune response are highlighted.

2,668 citations

Journal ArticleDOI
TL;DR: Recent advances made in understanding the role of salicylic acid, jasmonates and ethylene in modulating plant defence responses against various diseases and pests are reviewed.
Abstract: Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.

2,072 citations

Journal ArticleDOI
TL;DR: Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network, and diverse small-molecule hormones play pivotal roles in the regulation of this network.
Abstract: Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Pathogens, on the other hand, can manipulate the plant's defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.

2,019 citations