scispace - formally typeset
Search or ask a question
Author

Iris Lansdorp-Vogelaar

Bio: Iris Lansdorp-Vogelaar is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: Population & Colorectal cancer. The author has an hindex of 47, co-authored 201 publications receiving 10974 citations. Previous affiliations of Iris Lansdorp-Vogelaar include Memorial Sloan Kettering Cancer Center & Erasmus University Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings support the hypothesis that colonoscopic removal of adenomatous polyps prevents death from colorectal cancer.
Abstract: BACKGROUND In the National Polyp Study (NPS), colorectal cancer was prevented by colonoscopic removal of adenomatous polyps. We evaluated the long-term effect of colonoscopic polypectomy in a study on mortality from colorectal cancer. METHODS We included in this analysis all patients prospectively referred for initial colonoscopy (between 1980 and 1990) at NPS clinical centers who had polyps (adenomas and nonadenomas). The National Death Index was used to identify deaths and to determine the cause of death; follow-up time was as long as 23 years. Mortality from colorectal cancer among patients with adenomas removed was compared with the expected incidence-based mortality from colorectal cancer in the general population, as estimated from the Surveillance Epidemiology and End Results (SEER) Program, and with the observed mortality from colorectal cancer among patients with nonadenomatous polyps (internal control group). RESULTS Among 2602 patients who had adenomas removed during participation in the study, after a median of 15.8 years, 1246 patients had died from any cause and 12 had died from colorectal cancer. Given an estimated 25.4 expected deaths from colorectal cancer in the general population, the standardized incidence-based mortality ratio was 0.47 (95% confidence interval [CI], 0.26 to 0.80) with colonoscopic polypectomy, suggesting a 53% reduction in mortality. Mortality from colorectal cancer was similar among patients with adenomas and those with nonadenomatous polyps during the first 10 years after polypectomy (relative risk, 1.2; 95% CI, 0.1 to 10.6). CONCLUSIONS These findings support the hypothesis that colonoscopic removal of adenomatous polyps prevents death from colorectal cancer. (Funded by the National Cancer Institute and others.)

2,381 citations

Journal ArticleDOI
01 Feb 2010-Cancer
TL;DR: This year's report includes trends in colorectal cancer incidence and death rates and highlights the use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions.
Abstract: BACKGROUND. The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information regarding cancer occurrence and trends in the United States. This year's report includes trends in colorectal cancer (CRC) incidence and death rates and highlights the use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions. METHODS. Information regarding invasive cancers was obtained from the NCI, CDC, and NAACCR; and information on deaths was obtained from the CDC's National Center for Health Statistics. Annual percentage changes in the age-standardized incidence and death rates (based on the year 2000 US population standard) for all cancers combined and for the top 15 cancers were estimated by joinpoint analysis of long-term trends (1975-2006) and for short-term fixed-interval trends (1997-2006). All statistical tests were 2-sided. RESULTS. Both incidence and death rates from all cancers combined significantly declined (P < .05) in the most recent time period for men and women overall and for most racial and ethnic populations. These decreases were driven largely by declines in both incidence and death rates for the 3 most common cancers in men (ie, lung and prostate cancers and CRC) and for 2 of the 3 leading cancers in women (ie, breast cancer and CRC). The long-term trends for lung cancer mortality in women had smaller and smaller increases until 2003, when there was a change to a nonsignificant decline. Microsimulation modeling demonstrates that declines in CRC death rates are consistent with a relatively large contribution from screening and with a smaller but demonstrable impact of risk factor reductions and improved treatments. These declines are projected to continue if risk factor modification, screening, and treatment remain at current rates, but they could be accelerated further with favorable trends in risk factors and higher utilization of screening and optimal treatment. CONCLUSIONS. Although the decrease in overall cancer incidence and death rates is encouraging, rising incidence and mortality for some cancers are of concern.

1,817 citations

Journal ArticleDOI
TL;DR: Two independent microsimulation modeling groups from the Cancer Intervention and Surveillance Modeling Network (CISNET), funded by the National Cancer Institute, used a comparative modeling approach to compare life-years gained relative to resource use of different strategies for colorectal cancer screening.
Abstract: Despite recent declines in both incidence and mortality (1), colorectal cancer remains the second most common cause of cancer death in the United States (2). Screening for colorectal cancer reduces mortality by allowing physicians to detect cancer at earlier, more treatable stages, as well as to identify and remove adenomatous polyps (asymptomatic benign precursor lesions that may lead to colorectal cancer). Many tests are available for screening, such as fecal occult blood tests (FOBTs), flexible sigmoidoscopy, and colonoscopy. Screening with FOBT (Hemoccult II, Beckman Coulter, Fullerton, California) has been shown to reduce colorectal cancer mortality by 15% to 33% in randomized, controlled trials (3--5), and screening with more sensitive FOBTs, flexible sigmoidoscopy, colonoscopy, or combinations of these tests may reduce the burden of colorectal cancer even more (6, 7). In the absence of adequate clinical trial data on several recommended screening strategies, microsimulation modeling can provide guidance on the risks, benefits, and testing resources required for different screening strategies to reduce the burden of colorectal cancer. In July 2002, the U.S. Preventive Services Task Force (USPSTF) concluded that there was sufficient evidence to recommend strongly that all average-risk adults 50 years of age and older should be offered colorectal cancer screening (8). However, the logistics of screening, such as the type of screening test, screening interval, and age at which to stop screening, were not evaluated in terms of the balance of benefits and potential harms. The USPSTF has again addressed recommendations for colorectal cancer screening with a systematic review of the evidence (9) on screening tests. For this assessment, the USPSTF requested a decision analysis to project expected outcomes of various strategies for colorectal cancer screening. Two independent microsimulation modeling groups from the Cancer Intervention and Surveillance Modeling Network (CISNET), funded by the National Cancer Institute, used a comparative modeling approach to compare life-years gained relative to resource use of different strategies for colorectal cancer screening.

587 citations

Journal ArticleDOI
L. von Karsa1, Julietta Patnick2, Julietta Patnick3, Nereo Segnan1, Wendy Atkin4, Stephen P Halloran5, Stephen P Halloran6, Iris Lansdorp-Vogelaar7, N. Malila, Silvia Minozzi, Sue Moss, Philip Quirke8, Robert Steele9, Michael Vieth, Lars Aabakken10, Lutz Altenhofen, R. Ancelle-Park, N. Antoljak11, A. Anttila, Paola Armaroli, S. Arrossi, Joan Austoker3, Rita Banzi12, Cristina Bellisario, J. Blom13, Hermann Brenner14, Michael Bretthauer15, M. Camargo Cancela1, Guido Costamagna, Jack Cuzick16, M. Dai17, Jill Daniel18, Jill Daniel1, Evelien Dekker19, N. Delicata, S. Ducarroz1, H. Erfkamp20, J. A. Espinàs, J. Faivre21, L. Faulds Wood, Anath Flugelman, S. Frkovic-Grazio22, Berta M. Geller23, Livia Giordano, Grazia Grazzini, Jane Green3, C. Hamashima24, C. Herrmann1, Paul Hewitson3, Geir Hoff, Holten Iw, R. Jover, Michal F. Kaminski, E. J. Kuipers7, Juozas Kurtinaitis, René Lambert1, Guy Launoy25, W. Lee26, R. Leicester27, Marcis Leja28, David A. Lieberman29, T Lignini1, Eric Lucas1, Elsebeth Lynge30, S. Mádai, J. Marinho, J. Maučec Zakotnik, G. Minoli, C. Monk31, António Pedro Delgado Morais, Richard Muwonge1, Marion R. Nadel32, L. Neamtiu, M. Peris Tuser, Michael Pignone33, Christian Pox34, M. Primic-Zakelj35, J. Psaila, Linda Rabeneck36, David F. Ransohoff33, M. Rasmussen30, Jaroslaw Regula, J. Ren1, Gad Rennert, J. F. Rey, Robert H. Riddell37, Mauro Risio, Vitor Rodrigues38, H. Saito24, Catherine Sauvaget1, Astrid Scharpantgen, Wolff Schmiegel34, Carlo Senore, Maqsood Siddiqi, D. Sighoko1, D. Sighoko39, Richard D. Smith18, Steve Smith40, Stepan Suchanek41, Eero Suonio1, W. Tong17, Sven Törnberg, E. Van Cutsem42, Luca Vignatelli, P. Villain3, Lydia Voti1, Lydia Voti43, Hidemi Watanabe44, Joanna Watson3, Sidney J. Winawer45, G. Young46, V. Zaksas, Marco Zappa, Roland Valori 
TL;DR: An overview of the principles, recommendations and standards in the guidelines for quality assurance in CRC screening and diagnosis are presented in journal format in an open-access Supplement of Endoscopy.
Abstract: Population-based screening for early detection and treatment of colorectal cancer (CRC) and precursor lesions, using evidence-based methods, can be effective in populations with a significant burden of the disease provided the services are of high quality. Multidisciplinary, evidence-based guidelines for quality assurance in CRC screening and diagnosis have been developed by experts in a project co-financed by the European Union. The 450-page guidelines were published in book format by the European Commission in 2010. They include 10 chapters and over 250 recommendations, individually graded according to the strength of the recommendation and the supporting evidence. Adoption of the recommendations can improve and maintain the quality and effectiveness of an entire screening process, including identification and invitation of the target population, diagnosis and management of the disease and appropriate surveillance in people with detected lesions. To make the principles, recommendations and standards in the guidelines known to a wider professional and scientific community and to facilitate their use in the scientific literature, the original content is presented in journal format in an open-access Supplement of Endoscopy. The editors have prepared the present overview to inform readers of the comprehensive scope and content of the guidelines.

440 citations

Journal ArticleDOI
01 Oct 2019-Gut
TL;DR: European trends in CRC incidence and mortality in subjects younger than 50 years, consistent with an age-cohort phenomenon, are analyzed and screening guidelines may need to be reconsidered.
Abstract: Objective The incidence of colorectal cancer (CRC) declines among subjects aged 50 years and above. An opposite trend appears among younger adults. In Europe, data on CRC incidence among younger adults are lacking. We therefore aimed to analyse European trends in CRC incidence and mortality in subjects younger than 50 years. Design Data on age-related CRC incidence and mortality between 1990 and 2016 were retrieved from national and regional cancer registries. Trends were analysed by Joinpoint regression and expressed as annual percent change. Results We retrieved data on 143.7million people aged 20–49 years from 20 European countries. Of them, 187 918 (0.13%) were diagnosed with CRC. On average, CRC incidence increased with 7.9% per year among subjects aged 20–29 years from 2004 to 2016. The increase in the age group of 30–39 years was 4.9% per year from 2005 to 2016, the increase in the age group of 40–49 years was 1.6% per year from 2004 to 2016. This increase started earliest in subjects aged 20–29 years, and 10–20 years later in those aged 30–39 and 40–49 years. This is consistent with an age-cohort phenomenon. Although in most European countries the CRC incidence had risen, some heterogeneity was found between countries. CRC mortality did not significantly change among the youngest adults, but decreased with 1.1%per year between 1990 and 2016 and 2.4% per year between 1990 and 2009 among those aged 30–39 years and 40–49 years, respectively. Conclusion CRC incidence rises among young adults in Europe. The cause for this trend needs to be elucidated. Clinicians should be aware of this trend. If the trend continues, screening guidelines may need to be reconsidered.

414 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations

Journal ArticleDOI
TL;DR: Overall cancer incidence trends are stable in women, but declining by 3.1% per year in men, much of which is because of recent rapid declines in prostate cancer diagnoses, and brain cancer has surpassed leukemia as the leading cause of cancer death among children and adolescents.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population.

14,664 citations