scispace - formally typeset
Search or ask a question
Author

Irune Villaluenga

Bio: Irune Villaluenga is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Electrolyte & Ionic conductivity. The author has an hindex of 14, co-authored 25 publications receiving 3340 citations. Previous affiliations of Irune Villaluenga include University of North Carolina at Chapel Hill & University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of Na-ion battery materials is presented, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.
Abstract: Energy production and storage have become key issues concerning our welfare in daily life. Present challenges for batteries are twofold. In the first place, the increasing demand for powering systems of portable electronic devices and zero-emission vehicles stimulates research towards high energy and high voltage systems. In the second place, low cost batteries are required in order to advance towards smart electric grids that integrate discontinuous energy flow from renewable sources, optimizing the performance of clean energy sources. Na-ion batteries can be the key for the second point, because of the huge availability of sodium, its low price and the similarity of both Li and Na insertion chemistries. In spite of the lower energy density and voltage of Na-ion based technologies, they can be focused on applications where the weight and footprint requirement is less drastic, such as electrical grid storage. Much work has to be done in the field of Na-ion in order to catch up with Li-ion technology. Cathodic and anodic materials must be optimized, and new electrolytes will be the key point for Na-ion success. This review will gather the up-to-date knowledge about Na-ion battery materials, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.

3,017 citations

Journal ArticleDOI
TL;DR: Pesko et al. as mentioned in this paper employed three independent techniques for measuring transference number, t+, in mixtures of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt.
Abstract: Author(s): Pesko, DM; Timachova, K; Bhattacharya, R; Smith, MC; Villaluenga, I; Newman, J; Balsara, NP | Abstract: The performance of battery electrolytes depends on three independent transport properties: ionic conductivity, diffusion coefficient, and transference number. While rigorous experimental techniques for measuring conductivity and diffusion coefficients are well-established, popular techniques for measuring the transference number rely on the assumption of ideal solutions. We employ three independent techniques for measuring transference number, t+, in mixtures of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt. Transference numbers obtained using the steady-state current method pioneered by Bruce and Vincent, t+,SS, and those obtained by pulsed-field gradient NMR, t+,NMR, are compared against a new approach detailed by Newman and coworkers, t+,Ne, for a range of salt concentrations. The latter approach is rigorous and based on concentrated solution theory, while the other two approaches only yield the true transference number in ideal solutions. Not surprisingly, we find that t+,SS and t+,NMR are positive throughout the entire salt concentration range, and decrease monotonically with increasing salt concentration. In contrast, t+,Ne has a non-monotonic dependence on salt concentration and is negative in the highly-concentrated regime. Our work implies that ion transport in PEO/LiTFSI electrolytes at high salt concentrations is dominated by the transport of ionic clusters.

167 citations

Journal ArticleDOI
TL;DR: X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells.
Abstract: Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10(-4) S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li(+)/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.

109 citations

Journal ArticleDOI
TL;DR: Villaluenga et al. as discussed by the authors presented complete electrochemical transport characterization of a microphase-separated SEO block copolymer electrolyte by reporting κ, D, and t+0 as functions of salt concentration.
Abstract: Author(s): Villaluenga, I; Pesko, DM; Timachova, K; Feng, Z; Newman, J; Srinivasan, V; Balsara, NP | Abstract: Nanostructured block copolymers are of particular interest as electrolytes in batteries with lithium metal anodes. The performance of electrolytes in batteries can be predicted only if three transport coefficients (ionic conductivity, κ, salt diffusion coefficient, D, and cation transference number, t+0) are known. We present complete electrochemical transport characterization of a microphase-separated SEO block copolymer electrolyte by reporting κ, D, and t+0 as functions of salt concentration. We compare the properties of the block copolymer electrolyte with those of PEO homopolymer electrolytes. Negative values of t+0 are observed in many cases. Recasting the transport parameters in terms of Stefan-Maxwell coefficients provides insight into the nature of ion transport in these electrolytes.

79 citations

Journal ArticleDOI
TL;DR: Choo et al. as discussed by the authors used the Stefan-Maxwell diffusion coefficients to predict the velocities of the ions at very early times after an electric field is applied across the electrolyte.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of electrode materials including cathodes and anodes as well as electrolytes for room-temperature stationary sodium-ion batteries are briefly reviewed and compared the difference in storage behavior between Na and Li in their analogous electrodes and summarize the sodium storage mechanisms in available electrode materials.
Abstract: Room-temperature stationary sodium-ion batteries have attracted great attention particularly in large-scale electric energy storage applications for renewable energy and smart grid because of the huge abundant sodium resources and low cost. In this article, a variety of electrode materials including cathodes and anodes as well as electrolytes for room-temperature stationary sodium-ion batteries are briefly reviewed. We compare the difference in storage behavior between Na and Li in their analogous electrodes and summarize the sodium storage mechanisms in the available electrode materials. This review also includes some new results from our group and our thoughts on developing new materials. Some perspectives and directions on designing better materials for practical applications are pointed out based on knowledge from the literature and our experience. Through this extensive literature review, the search for suitable electrode and electrolyte materials for stationary sodium-ion batteries is still challenging. However, after intensive research efforts, we believe that low-cost, long-life and room-temperature sodium-ion batteries would be promising for applications in large-scale energy storage system in the near future.

2,687 citations