scispace - formally typeset
Search or ask a question
Author

Isaac E. Stillman

Bio: Isaac E. Stillman is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Kidney disease & Preeclampsia. The author has an hindex of 34, co-authored 114 publications receiving 11744 citations. Previous affiliations of Isaac E. Stillman include Harvard University & SUNY Downstate Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: It is confirmed that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of VEGF and placental growth factor (PlGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt 1 that fall after delivery, and observations suggest that excess circulating sFelt1 contributes to the pathogenesis of preeClampsia.
Abstract: Preeclampsia, a syndrome affecting 5% of pregnancies, causes substantial maternal and fetal morbidity and mortality. The pathophysiology of preeclampsia remains largely unknown. It has been hypothesized that placental ischemia is an early event, leading to placental production of a soluble factor or factors that cause maternal endothelial dysfunction, resulting in the clinical findings of hypertension, proteinuria, and edema. Here, we confirm that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of VEGF and placental growth factor (PlGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt1 that fall after delivery. We demonstrate that increased circulating sFlt1 in patients with preeclampsia is associated with decreased circulating levels of free VEGF and PlGF, resulting in endothelial dysfunction in vitro that can be rescued by exogenous VEGF and PlGF. Additionally, VEGF and PlGF cause microvascular relaxation of rat renal arterioles in vitro that is blocked by sFlt1. Finally, administration of sFlt1 to pregnant rats induces hypertension, proteinuria, and glomerular endotheliosis, the classic lesion of preeclampsia. These observations suggest that excess circulating sFlt1 contributes to the pathogenesis of preeclampsia.

3,613 citations

Journal ArticleDOI
TL;DR: A novel placenta-derived soluble TGF-β coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery, suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.
Abstract: Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Maternal endothelial dysfunction mediated by excess placenta-derived soluble VEGF receptor 1 (sVEGFR1 or sFlt1) is emerging as a prominent component in disease pathogenesis. We report a novel placenta-derived soluble TGF-beta coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery. sEng inhibits formation of capillary tubes in vitro and induces vascular permeability and hypertension in vivo. Its effects in pregnant rats are amplified by coadministration of sFlt1, leading to severe preeclampsia including the HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome and restriction of fetal growth. sEng impairs binding of TGF-beta1 to its receptors and downstream signaling including effects on activation of eNOS and vasodilation, suggesting that sEng leads to dysregulated TGF-beta signaling in the vasculature. Our results suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.

1,731 citations

Journal ArticleDOI
TL;DR: It is confirmed that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of VEGF and placental growth factor (PlGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt 1 that fall after delivery, and observations suggest that excess circulating sFelt1 contributes to the pathogenesis of preeClampsia.
Abstract: Numerous explanations of the endothelial dysfunction that characterizes preeclampsia have been advanced This pathophysiological study examined the hypothesis that placental ischemia occurs at an early stage and promotesplacental production of a soluble factor that leads to maternal endothelial dysfunction and its clinical sequelae, hypertension, proteinuria, and edema Profiles of gene expression in placental tissue were obtained in samples from women with and without preeclampsia Soluble fins-like tyrosine kinase 1 (sFlt1) mRNA has been found to be upregulated in preeclamptic placentas It is a splice variant of the vascular endothelial growth factor (VEGF) receptor that acts as a potent VEGF and placental growth factor (PlGF) antagonist Circumstantial evidence suggests that antagonism of VEGF could contribute to hypertension and proteinuria in view of the fact that the growth factor helps to reduce vascular tone and blood pressure The presence of increased amounts of mRNA for placental sFlt1 was confirmed, Both sFlt1 and Flt1 messages were upregulated in preeciamptic placentas Studies in 32 pregnant women showed that total serum sFlt1 was nearly 5 times higher in those with severe preeclampsia than in normotensive women, and this difference was not explained by earlier gestational age Serum levels of free VEDGF and PlGF, measured by enzyme-linked immunosorbent assay, were significantly reduced in the presence of recombinant sFltl Angiogenesis, as reflected by endothelial tube formation, was inhibited by serum from women with preeclampsia, and an analogous effect was noted in vitro when adding sFlt1 to serum from normotensive women Adding VEGF and PlGF to preeclamptic serum restored tube formation Studies based on an in vitro assay for microvascular reactivity showed that sFltl by itself did not cause significant vasoconstriction, but it did block the dose-dependent increase in vasodilation produced by VEGF or PlGF Recombinant adenovirus encoding the murine sFltl gene product produced significant hypertension and heavy albuminuria when injected into pregnant rats Similar effects were noted in nonpregnant animals In pregnant rats treated with sFltl, renal glomeruli enlarged and capillary loops were occluded by swollen hypertrophied endocapillary cells Similar renal lesions developed in sFlk1-treated nonpregnant rats These findings suggest that excessive placental production of sFlt1 contributes to hypertension, proteinuria, and glomerular endotheliosis in preeclamptic women Antagonizing these effects could be a promising approach to treating these patients

1,003 citations

Journal ArticleDOI
TL;DR: It is demonstrated that DN T cells from patients with SLE produce significant amounts of IL-17 and IFN-γ, and expand when stimulated in vitro with an anti-CD3 Ab in the presence of accessory cells, and suggested that they contribute to the pathogenesis of kidney damage in patients withSLE.
Abstract: Double negative (DN) T cells are expanded in patients with systemic lupus erythematosus (SLE) and stimulate autoantibody production as efficiently as CD4(+) T cells. In this study, we demonstrate that DN T cells from patients with SLE produce significant amounts of IL-17 and IFN-gamma, and expand when stimulated in vitro with an anti-CD3 Ab in the presence of accessory cells. Furthermore, IL-17(+) and DN T cells are found in kidney biopsies of patients with lupus nephritis. Our findings establish that DN T cells produce the inflammatory cytokines IL-17 and IFN-gamma, and suggest that they contribute to the pathogenesis of kidney damage in patients with SLE.

685 citations

Journal ArticleDOI
TL;DR: The findings further clarify the early immune response against replication-deficient adenoviral vectors and suggest a strategy to preventadenovirus-mediated inflammation and tissue injury by interfering with chemokine or neutrophil function.
Abstract: Replication-deficient adenoviruses are known to induce acute injury and inflammation of infected tissues, thus limiting their use for human gene therapy. However, molecular mechanisms triggering this response have not been fully defined. To characterize this response, chemokine expression was evaluated in DBA/2 mice following the intravenous administration of various adenoviral vectors. Administration of adCMVbeta gal, adCMV-GFP, or FG140 intravenously rapidly induced a consistent pattern of C-X-C and C-C chemokine expression in mouse liver in a dose-dependent fashion. One hour following infection with 10(10) PFU of adCMVbeta gal, hepatic levels of MIP-2 mRNA were increased >60-fold over baseline. MCP-1 and IP-10 mRNA levels were also increased immediately following infection with various adenoviral vectors, peaking at 6 hr with >25- and >100-fold expression, respectively. Early induction of RANTES and MIP-1beta mRNA by adenoviral vectors also occurred, but to a lesser degree. The induction of chemokines occurred independently of viral gene expression since psoralen-inactivated adenoviral particles produced an identical pattern of chemokine gene transcription within the first 16 hr of administration. The expression of chemokines correlated as expected with the influx of neutrophils and CD11b+ cells into the livers of infected animals. At high titers, all adenoviral vectors caused significant hepatic necrosis and apoptosis following systemic administration to DBA/2 mice. To investigate the role of neutrophils in this adenovirus-induced hepatic injury, animals were pretreated with neutralizing anti-MIP-2 antibodies or depleted of neutrophils. MIP-2 antagonism and neutrophil depletion both resulted in reduced serum ALT/AST levels and attenuation of the adenovirus-induced hepatic injury histologically, confirming that this early injury is largely due to chemokine production and neutrophil recruitment. Our findings further clarify the early immune response against replication-deficient adenoviral vectors and suggest a strategy to prevent adenovirus-mediated inflammation and tissue injury by interfering with chemokine or neutrophil function.

444 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions and is implicated in pathologicalAngiogenesis associated with tumors, intraocular neovascular disorders and other conditions.
Abstract: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF has also been implicated in pathological angiogenesis associated with tumors, intraocular neovascular disorders and other conditions. The biological effects of VEGF are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which differ considerably in signaling properties. Non-signaling co-receptors also modulate VEGF RTK signaling. Currently, several VEGF inhibitors are undergoing clinical testing in several malignancies. VEGF inhibition is also being tested as a strategy for the prevention of angiogenesis, vascular leakage and visual loss in age-related macular degeneration.

8,942 citations

01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: Molecular insights into the formation of new blood vessels are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.
Abstract: Blood vessels constitute the first organ in the embryo and form the largest network in our body but, sadly, are also often deadly. When dysregulated, the formation of new blood vessels contributes to numerous malignant, ischemic, inflammatory, infectious and immune disorders. Molecular insights into these processes are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.

4,137 citations

Journal ArticleDOI
Napoleone Ferrara1
TL;DR: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models and is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.

3,414 citations

Journal ArticleDOI
TL;DR: Alterations in the levels of sFlt-1 and free PlGF were greater in women with an earlier onset of preeclampsia and in women in whom preeClampsia was associated with a small-for-gestational-age infant.
Abstract: Background The cause of preeclampsia remains unclear. Limited data suggest that excess circulating soluble fms-like tyrosine kinase 1 (sFlt-1), which binds placental growth factor (PlGF) and vascul...

3,148 citations