scispace - formally typeset
Search or ask a question
Author

Isaac Park

Bio: Isaac Park is an academic researcher from University of South Carolina. The author has contributed to research in topics: Calcineurin & Lenalidomide. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
11 Oct 2021-Cancers
TL;DR: In this article, a review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.
Abstract: Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.

4 citations


Cited by
More filters
Journal ArticleDOI
07 May 2022-Oncogene
TL;DR: In this article , a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR 5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs): CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IkZF3.
Abstract: WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.

9 citations

Journal ArticleDOI
TL;DR: The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN as discussed by the authors .

4 citations

Journal ArticleDOI
TL;DR: Compared to VRd regimen, IRd had the similar efficacy, better safety, and may be more convenient for patients with poor basic condition for newly diagnosed multiple myeloma.
Abstract: To compare the response and safety of Ixazomib/Lenalidomide/Dexamethasone (IRd) and Bortezomib/Lenalidomide/Dexamethasone (VRd) treatment in newly diagnosed multiple myeloma (MM).

2 citations

Journal ArticleDOI
TL;DR: A case of a 71-year-old man with a history of multiple myeloma maintained on lenalidomide after stem cell transplant who presented with treatment-associated ALL, which has been described in prior case reports with ALL secondary to lenalidomside therapy is presented.
Abstract: Secondary malignancies including leukemia are an increasing concern in patients with prior primary malignancies treated with alkylating agents or topoisomerase II inhibitors. These can also be referred to as therapy-related leukemia. Therapy-related leukemia most commonly results in myelodysplastic syndrome or acute myeloid leukemia. The alkylating agent can cause chromosomal aberrations typically manifest as deletions in chromosome 11 or loss of part of complete loss of chromosomes 5 and 7. Conversely, acute lymphoblastic leukemia (ALL) has been described following maintenance therapy with immunomodulatory (IMiD) drugs pomalidomide, thalidomide, and lenalidomide. We present a case of a 71-year-old man with a history of multiple myeloma (MM) maintained on lenalidomide after stem cell transplant who presented with treatment-associated ALL. At time of leukemic presentation, chromosomal analysis showed a near-triploid clone consistent with masked double low hyplodiploidy which is associated with a poor prognosis. The patient had a deletion of the long arm of chromosome 5 which has been described in prior case reports with ALL secondary to lenalidomide therapy. There are explicit mechanisms in the literature, which have been attributed to development of ALL after exposure to thalidomide or lenalidomide. At time of submission, there are 20 cases described in the literature linking ALL to IMiD drugs. We describe a case and review the mechanisms of lenalidomide-associated ALL.

2 citations