scispace - formally typeset
Search or ask a question
Author

Isabelle Soerjomataram

Other affiliations: Erasmus University Rotterdam
Bio: Isabelle Soerjomataram is an academic researcher from International Agency for Research on Cancer. The author has contributed to research in topics: Population & Cancer. The author has an hindex of 49, co-authored 166 publications receiving 83673 citations. Previous affiliations of Isabelle Soerjomataram include Erasmus University Rotterdam.


Papers
More filters
Journal ArticleDOI
06 Mar 2015-Gut
TL;DR: This study has, for the first time, quantified global incidence patterns of CGC and NCGC providing new insights into the global burden of these cancers.
Abstract: Objective Globally, gastric cancer incidence shows remarkable international variation and demonstrates distinct characteristics by the two major topographical subsites, cardia (CGC) and non-cardia (NCGC). Because global incidence estimates by subsite are lacking, we aimed to describe the worldwide incidence patterns of CGC and NCGC separately. Design Using Cancer Incidence in Five Continents Volume X (CI5X), we ascertained the proportions of CGC and NCGC by country, sex and age group ( Results According to our estimates, in 2012, there were 260 000 cases of CGC (ASR 3.3 per 100 000) and 691 000 cases of NCGC (ASR 8.8) worldwide. The highest regional rates of both gastric cancer subsites were in Eastern/Southeastern Asia (in men, ASRs: 8.7 and 21.7 for CGC and NCGC, respectively). In most countries NCGC occurred more frequently than CGC with an average ratio of 2:1; however, in some populations where NCGC incidence rates were lower than the global average, CGC rates were similar or higher than NCGC rates. Men had higher rates than women for both subsites but particularly for CGC (male-to-female ratio 3:1). Conclusions This study has, for the first time, quantified global incidence patterns of CGC and NCGC providing new insights into the global burden of these cancers. Country-specific estimates are provided; however, these should be interpreted with caution. This work will support future investigations across populations.

283 citations

Journal ArticleDOI
TL;DR: The potential cumulative effect of scaled up global vaccination and screening coverage on the number of cervical cancer cases averted over the 50 years from 2020 to 2069 is quantified and outcomes beyond 2070 are predicted to predict the future incidence rates and burden of cervicalcancer.
Abstract: Summary Background Cervical screening and human papillomavirus (HPV) vaccination have been implemented in most high-income countries; however, coverage is low in low-income and middle-income countries (LMICs). In 2018, the Director-General of WHO announced a call to action for the elimination of cervical cancer as a public health problem. WHO has called for global action to scale-up vaccination, screening, and treatment of precancer, early detection and prompt treatment of early invasive cancers, and palliative care. An elimination threshold in terms of cervical cancer incidence has not yet been defined, but an absolute rate of cervical cancer incidence could be chosen for such a threshold. In this study, we aimed to quantify the potential cumulative effect of scaled up global vaccination and screening coverage on the number of cervical cancer cases averted over the 50 years from 2020 to 2069, and to predict outcomes beyond 2070 to identify the earliest years by which cervical cancer rates could drop below two absolute levels that could be considered as possible elimination thresholds—the rare cancer threshold (six new cases per 100 000 women per year, which has been observed in only a few countries), and a lower threshold of four new cases per 100 000 women per year. Methods In this statistical trends analysis and modelling study, we did a statistical analysis of existing trends in cervical cancer worldwide using high-quality cancer registry data included in the Cancer Incidence in Five Continents series published by the International Agency for Research on Cancer. We then used a comprehensive and extensively validated simulation platform, Policy1-Cervix, to do a dynamic multicohort modelled analysis of the impact of potential scale-up scenarios for cervical cancer prevention, in order to predict the future incidence rates and burden of cervical cancer. Data are presented globally, by Human Development Index (HDI) category, and at the individual country level. Findings In the absence of further intervention, there would be 44·4 million cervical cancer cases diagnosed globally over the period 2020–69, with almost two-thirds of cases occurring in low-HDI or medium-HDI countries. Rapid vaccination scale-up to 80–100% coverage globally by 2020 with a broad-spectrum HPV vaccine could avert 6·7–7·7 million cases in this period, but more than half of these cases will be averted after 2060. Implementation of HPV-based screening twice per lifetime at age 35 years and 45 years in all LMICs with 70% coverage globally will bring forward the effects of prevention and avert a total of 12·5–13·4 million cases in the next 50 years. Rapid scale-up of combined high-coverage screening and vaccination from 2020 onwards would result in average annual cervical cancer incidence declining to less than six new cases per 100 000 individuals by 2045–49 for very-high-HDI countries, 2055–59 for high-HDI countries, 2065–69 for medium-HDI countries, and 2085–89 for low-HDI countries, and to less than four cases per 100 000 by 2055–59 for very-high-HDI countries, 2065–69 for high-HDI countries, 2070–79 for medium-HDI countries, and 2090–2100 or beyond for low-HDI countries. However, rates of less than four new cases per 100 000 would not be achieved in all individual low-HDI countries by the end of the century. If delivery of vaccination and screening is more gradually scaled up over the period 2020–50 (eg, 20–45% vaccination coverage and 25–70% once-per-lifetime screening coverage by 2030, increasing to 40–90% vaccination coverage and 90% once-per-lifetime screening coverage by 2050, when considered as average coverage rates across HDI categories), end of the century incidence rates will be reduced by a lesser amount. In this scenario, average cervical cancer incidence rates will decline to 0·8 cases per 100 000 for very-high-HDI countries, 1·3 per 100 000 for high-HDI countries, 4·4 per 100 000 for medium-HDI countries, and 14 per 100 000 for low-HDI countries, by the end of the century. Interpretation More than 44 million women will be diagnosed with cervical cancer in the next 50 years if primary and secondary prevention programmes are not implemented in LMICs. If high coverage vaccination can be implemented quickly, a substantial effect on the burden of disease will be seen after three to four decades, but nearer-term impact will require delivery of cervical screening to older cohorts who will not benefit from HPV vaccination. Widespread coverage of both HPV vaccination and cervical screening from 2020 onwards has the potential to avert up to 12·5–13·4 million cervical cancer cases by 2069, and could achieve average cervical cancer incidence of around four per 100 000 women per year or less, for all country HDI categories, by the end of the century. A draft global strategy to accelerate cervical cancer elimination, with goals and targets for the period 2020–30, will be considered at the World Health Assembly in 2020. The findings presented here have helped inform initial discussions of elimination targets, and ongoing comparative modelling with other groups is supporting the development of the final goals and targets for cervical cancer elimination. Funding National Health and Medical Research Council (NHMRC) Australia, part-funded via the NHMRC Centre of Excellence for Cervical Cancer Control (C4; APP1135172).

248 citations

Journal ArticleDOI
01 Sep 2020-Gut
TL;DR: These updated estimates of the global burden of oesophageal and gastric cancer by subtype and site suggest an ongoing transition in epidemiological patterns and will aid in developing appropriate cancer control strategies.
Abstract: Objectives To provide updated estimates of the global burden of oesophageal and gastric cancer by subsite and type Methods Using data from population-based cancer registries, proportions of oesophageal adenocarcinoma (OAC) and squamous cell carcinoma (OSCC) out of all oesophageal as well as cardia gastric cancer (CGC) and non-CGC (NCGC) out of all gastric cancer cases were computed by country, sex and age group Proportions were subsequently applied to the estimated numbers of oesophageal and gastric cancer cases from GLOBOCAN 2018 Age-standardised incidence rates (ASR) were calculated Results In 2018, there were an estimated 572 000 new cases of oesophageal cancer worldwide, 85 000 OACs (ASR 09 per 100 000, both sexes combined) and 482 000 OSCCs (ASR 53) Out of 103 million gastric cancers, there were an estimated 181 000 cases of CGC (ASR 20) and 853 000 cases of NCGC (ASR 92) While the highest incidence rates of OSCC, CGC and NCGC were observed in Eastern Asia (ASRs 111, 44 and 179, respectively), rates of OAC were highest in Northern Europe (ASR 35) While globally OSCC and NCGC remain the most common types of oesophageal and gastric cancer, respectively, rates of OAC exceed those of OSCC in an increasing number of high-income countries Conclusions These updated estimates of the global burden of oesophageal and gastric cancer by subtype and site suggest an ongoing transition in epidemiological patterns This work will serve as a cornerstone for policy-making and will aid in developing appropriate cancer control strategies

240 citations

Journal ArticleDOI
TL;DR: Improved surveillance of health risk factors including obesity as well as the scale and profile of cancer in every country of the world is urgently needed to enable the design of cost-effective actions to curb the growing burden of cancer related to excess body weight.

206 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations