scispace - formally typeset
Search or ask a question
Author

Isaura Rigo

Bio: Isaura Rigo is an academic researcher from Columbia University. The author has contributed to research in topics: Medicine & Epidemiology. The author has an hindex of 4, co-authored 4 publications receiving 835 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex.
Abstract: T cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we report the presence of loss-of-function mutations and deletions of the EZH2 and SUZ12 genes, which encode crucial components of the Polycomb repressive complex 2 (PRC2), in 25% of T-ALLs. To further study the role of PRC2 in T-ALL, we used NOTCH1-dependent mouse models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark Lys27 trimethylation of histone 3 (H3K27me3) by antagonizing the activity of PRC2. These studies suggest a tumor suppressor role for PRC2 in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation.

436 citations

Journal ArticleDOI
TL;DR: It is demonstrated that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucoc Corticoid therapy, and pharmacologic inhibition of AKT with MK2206 effectively reverses glucocORTicoid resistance.

223 citations

Journal ArticleDOI
TL;DR: A substantial proportion of adult T-ALL samples display gene expression and mutation characteristics of both T cell and acute myeloid leukemias; mutations in ETV6 are found exclusively within this new molecular subgroup of adultT-ALL patients.
Abstract: Early immature T cell acute lymphoblastic leukemias (T-ALLs) account for ∼5–10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. In this study, analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid leukemias. Many adult immature T-ALLs harbored mutations in myeloid-specific oncogenes and tumor suppressors including IDH1 , IDH2 , DNMT3A , FLT3 , and NRAS . Moreover, we identified ETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. Our results demonstrate that early immature adult T-ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL characteristics, and highlight the potential role of ETV6 mutations in these tumors.

182 citations

Journal ArticleDOI
03 Oct 2013-Blood
TL;DR: A Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL is demonstrated and a possible link between genetic predisposition factors in thepathogenesis of autoimmunity and leukemogenesis is highlighted.

105 citations

Journal ArticleDOI
TL;DR: The COVID-19 Community Research Partnership (CCRP) is a multisite surveillance platform designed to characterize the epidemiology of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) pandemic as mentioned in this paper .
Abstract: Abstract The COVID-19 Community Research Partnership (CCRP) is a multisite surveillance platform designed to characterize the epidemiology of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) pandemic. This article describes the CCRP study design and methodology. The CCRP includes two prospective cohorts, one with six health systems in the mid-Atlantic and southern USA, and the other with six health systems in North Carolina. With enrollment beginning in April 2020, sites invited persons within their healthcare systems as well as community members to participate in daily surveillance for symptoms of COVID-like illnesses, testing, and risk behaviors. Participants with electronic health records (EHRs) were also asked to volunteer data access. Subsets of participants, representative of the general population and including oversampling of populations of interest, were selected for repeated at-home serology testing. By October 2021, 65 739 participants (62 261 adult and 3478 pediatric) were enrolled, with 89% providing syndromic data, 74% providing EHR data, and 70% participating in one of the two serology sub-studies. An average of 62% of the participants completed a daily survey at least once a week, and 55% of the serology kits were returned. The CCRP provides rich regional epidemiologic data and the opportunity to more fully characterize the risks and sequelae of SARS-CoV-2 infection.

7 citations


Cited by
More filters
Journal ArticleDOI
06 Jul 2012-Cell
TL;DR: The basic principles behind DNA methylation, histone modification, nucleosome remodeling, and RNA-mediated targeting are presented and the evidence suggesting that their misregulation can culminate in cancer is highlighted.

2,501 citations

Journal ArticleDOI
TL;DR: The analyses show that the blood cells of more than 2% of individuals contain mutations that may represent premalignant events that cause clonal hematopoietic expansion, and several recurrently mutated genes that may be disease initiators are identified.
Abstract: Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5-6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.

1,421 citations

Journal ArticleDOI
TL;DR: A unifying perspective is synthesized that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription.
Abstract: Recent genomic studies have resulted in an emerging understanding of the role of chromatin regulators in the development of cancer. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex, is recurrently mutated in several forms of cancer and is highly expressed in numerous others. Notably, both gain-of-function and loss-of-function mutations occur in cancers but are associated with distinct cancer types. Here we review the spectrum of EZH2-associated mutations, discuss the mechanisms underlying EZH2 function, and synthesize a unifying perspective that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription. We further discuss EZH2 inhibitors that are now showing early signs of promise in clinical trials and also additional strategies to combat roles of EZH2 in cancer.

1,047 citations

Journal ArticleDOI
TL;DR: Genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic changes and sequence mutations that contribute to leukaemogenesis, define new disease subtypes, affect responsiveness to treatment, and might provide novel prognostic markers and therapeutic targets for personalised medicine.

801 citations

Journal ArticleDOI
28 Mar 2013-Cell
TL;DR: The ways in which alterations in the genome and epigenome influence each other and cooperate to promote oncogenic transformation are explored.

752 citations