scispace - formally typeset
Search or ask a question
Author

Isha Sharma

Bio: Isha Sharma is an academic researcher from Northwestern University. The author has contributed to research in topics: Inositol oxygenase & Granulosa cell. The author has an hindex of 8, co-authored 20 publications receiving 211 citations. Previous affiliations of Isha Sharma include National Dairy Research Institute & Centre for Cellular and Molecular Biology.

Papers
More filters
Journal ArticleDOI
TL;DR: Findings indicate that ferroptosis, an integral process in the pathogenesis of Cisplatin-induced AKI, is modulated by the expression profile of MIOX.
Abstract: Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which were alleviated by ferrostatin-1, a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, WT mice, MIOX-overexpressing transgenic (MIOX-Tg) mice, and MIOX-KO mice were subjected to cisplatin treatment. In comparison with cisplatin-treated WT mice, cisplatin-treated MIOX-Tg mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of cisplatin-induced AKI, is modulated by the expression profile of MIOX.

110 citations

Journal ArticleDOI
TL;DR: MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI, according to analysis of genomic DNA in WT mice.
Abstract: Overexpression of the proximal tubular enzyme myo-inositol oxygenase (MIOX) induces oxidant stress in vitro However, the relevance of MIOX to tubular pathobiology remains enigmatic. To investigate the role of MIOX in cisplatin-induced tubular AKI, we generated conditional MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX-knockout (MIOX-/-) mice with tubule-specific MIOX overexpression or knockout, respectively. Compared with cisplatin-treated wild-type (WT) mice, cisplatin-treated MIOX-TG mice had even greater increases in urea, creatinine, and KIM-1 levels and more tubular injury and apoptosis, but these effects were attenuated in cisplatin-treated MIOX-/- mice. Similarly, MIOX-TG mice had the highest and MIOX-/- mice had the lowest renal levels of Bax, cleaved caspase-3, and NADPH oxidase-4 expression and reactive oxygen species (ROS) generation after cisplatin treatment. In vitro, cisplatin dose-dependently increased ROS generation in LLC-PK1 cells. Furthermore, MIOX overexpression in these cells accentuated cisplatin-induced ROS generation and perturbations in the ratio of GSH to oxidized GSH, whereas MIOX-siRNA or N-acetyl cysteine treatment attenuated these effects. Additionally, the cisplatin-induced enhancement of p53 activation, NF-κB binding to DNA, and NF-κB nuclear translocation in WT mice was exacerbated in MIOX-TG mice but absent in MIOX-/- mice. In vitro, MIOX-siRNA or NAC treatment reduced the dose-dependent increase in p53 expression induced by cisplatin. We also observed a remarkable influx of inflammatory cells and upregulation of cytokines in kidneys of cisplatin-treated MIOX-TG mice. Finally, analysis of genomic DNA in WT mice revealed cisplatin-induced hypomethylation of the MIOX promoter. These data suggest that MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI.

42 citations

Journal ArticleDOI
TL;DR: Gen expression and hormone analysis showed that buffalo granulosa cells exhibit FSH responsiveness with preovulatory phenotype having highest CYP19 gene expression and 17β-estradiol production, whereas a significant increase in transcript abundance of STAR, CYP11, and HSD3B genes accompanied with an increase in progesterone production was observed on day 8.

34 citations

Journal ArticleDOI
TL;DR: A role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin is supported.
Abstract: Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN....

32 citations

Journal ArticleDOI
TL;DR: This study demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis) and found that CLA intervenes the IGF1 signaling by decreasing p-Akt.
Abstract: Conjugated linoleic acid (CLA) has drawn much interest in last two decades in the area ranging from anticancer activity to obesity. A number of research papers have been published recently with regard to CLA's additional biological functions as reproductive benefits. However, not much is known how this mixture of isomeric compounds mediates its beneficial effects particularly on fertility. In this study, we demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis). Experiments were performed in primary serum-free buffalo granulosa cell culture, where cells were incubated with CLA in combination with FSH (25 ng/ml) and IGF1 (50 ng/ml). Results showed that 10 μM CLA inhibits FSH- and IGF1-induced granulosa cell proliferation; aromatase, GATA4, and IGF1 mRNA; and estradiol-17β production. Western blot analysis of total cell lysates revealed that CLA intervenes the IGF1 signaling by decreasing p-Akt. In addition, CLA was found to upregulate peroxisome proliferator-activated receptor-gamma (PPARG) and phosphatase and tensin homolog (PTEN) level in granulosa cells. Further study using PPARG- and PTEN-specific inhibitors supports the potential role of CLA in granulosa cell proliferation and steroidogenesis involving PPARG, PTEN, and PI3K/Akt pathway.

30 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this paper, the authors present methods for the meta-analysis of prevalence of multiple sclerosis using logit and double arcsine transformations to stabilise the variance and propose solutions to the problems that arise.
Abstract: Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.

725 citations

Journal ArticleDOI
TL;DR: The emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD are highlighted.
Abstract: The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD. This Review describes the current understanding of the role of epigenetics and epigenomics in diabetic kidney disease (DKD) and how epigenetic mechanisms might contribute to metabolic memory. The authors also discuss how epigenetic factors and non-coding RNAs could be used as biomarkers and drug targets for DKD diagnosis, prognosis and treatment.

257 citations

Journal ArticleDOI
TL;DR: A discussion of the foundation laid by cisplatin-induced AKI rodent models for the current understanding of AKI molecular pathophysiology is provided.
Abstract: Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.

193 citations

Journal ArticleDOI
TL;DR: In this article, a model of peroxisome proliferator-activated receptor (PPAR) isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle was proposed.
Abstract: Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle

167 citations

Journal ArticleDOI
TL;DR: It is indicated that adipose tissue-derived miR-27a may play a key role in the development of obesity-triggered insulin resistance in skeletal muscle.
Abstract: The mechanism by which adipocyte-derived endocrine factors promote insulin resistance in skeletal muscle are not fully understood. MiR-27a is highly expressed in sera of obese individuals with prediabetes and T2DM, and mainly derived by adipose tissues. Thus, miR-27a secreted into circulation by adipose tissue may regulate insulin resistance in skeletal muscle. Methods: The association between miR-27a and insulin resistance in skeletal muscle was determined in obese children, high-fat diet-induced miR-27a knockdown obese mice, db/db mice and C2C12 cells overexpressing miR-27a. The crosstalk mediated by exosomal miR-27a between adipose tissue and skeletal muscle was determined in C2C12 cells incubated with conditioned medium prepared from palmitate-treated 3T3-L1 adipocytes. Results: We showed that serum miR-27a level correlated positively with obesity and insulin resistance in obese children, and that elevated serum miR-27a levels correlated with insulin resistance in leptin receptor-deficient db/db mice, and with obesity and insulin resistance in high-fat diet-fed C57BL/6J mice. MiR-27a released from adipocytes of high-fat diet-fed C57BL/6J mice was associated with triglyceride accumulation. MiR-27a derived from these adipocytes induced insulin resistance in C2C12 skeletal muscle cells through miR-27a-mediated repression of PPARγ and its downstream genes involved in the development of obesity. Conclusions: These results identify a novel crosstalk signaling pathway between adipose tissue and skeletal muscle in the development of insulin resistance, and indicate that adipose tissue-derived miR-27a may play a key role in the development of obesity-triggered insulin resistance in skeletal muscle.

167 citations