scispace - formally typeset
Search or ask a question
Author

Ishan D. Joshipura

Bio: Ishan D. Joshipura is an academic researcher from North Carolina State University. The author has contributed to research in topics: Liquid metal & Oxide. The author has an hindex of 10, co-authored 21 publications receiving 575 citations. Previous affiliations of Ishan D. Joshipura include Lawrence Livermore National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe emerging methods to pattern metals that are liquid at room temperature, including injection, injection, subtractive, additive, and additive techniques, which can be divided into four categories: (i) patterning enabled by lithography, (ii) injection, (iii) subtractive and (iv) additive techniques.
Abstract: This highlight describes emerging methods to pattern metals that are liquid at room temperature. The ability to pattern liquid metals is important for fabricating metallic components that are soft, stretchable, conformal, and in some cases, shape-reconfigurable. Applications include electrodes, antennas, micro-mirrors, plasmonic structures, sensors, switches, and interconnects. Gallium (Ga) and its liquid metal alloys are attractive alternatives to toxic mercury. This family of alloys spontaneously forms a surface oxide that dominates the rheological and wetting properties of the metal. These properties pose challenges using conventional fabrication methods, but present new opportunities for patterning innovations. For example, Ga-based liquid metals may be injected, imprinted, or 3D printed on either soft or hard substrates. The use of a liquid metal also enables rapid and facile room temperature processing. The patterning techniques organize into four categories: (i) patterning enabled by lithography, (ii) injection, (iii) subtractive techniques, and (iv) additive techniques. Although many of these approaches take advantage of the surface oxide that forms on Ga and its alloys, some of the approaches may also be suitable for patterning other soft-conductors (e.g., conductive inks, pastes, elastomeric composites).

269 citations

Journal ArticleDOI
TL;DR: This simple and effective method can instantaneously tune the size of the microdroplets, which has applications in composites, catalysts, and microsystems.
Abstract: Liquid metal co-injected with electrolyte through a microfluidic flow-focusing orifice forms droplets with diameters and production frequencies controlled in real time by voltage. Applying voltage to the liquid metal controls the interfacial tension via a combination of electrochemistry and electrocapillarity. This simple and effective method can instantaneously tune the size of the microdroplets, which has applications in composites, catalysts, and microsystems.

108 citations

Journal ArticleDOI
TL;DR: A passive display based on thermochromic elastomers is proposed by leveraging Joule heating of embedded liquid metal wires by changing geometry in response to deformation to offer possibilities for creating entirely soft devices that respond locally to environmental interactions or act as embedded sensors for feedback loops.
Abstract: Conventional machines rely on rigid, centralized electronic components to make decisions, which limits complexity and scaling. Here, we show that decision making can be realized on the material-level without relying on semiconductor-based logic. Inspired by the distributed decision making that exists in the arms of an octopus, we present a completely soft, stretchable silicone composite doped with thermochromic pigments and innervated with liquid metal. The ability to deform the liquid metal couples geometric changes to Joule heating, thus enabling tunable thermo-mechanochromic sensing of touch and strain. In more complex circuits, deformation of the metal can redistribute electrical energy to distal portions of the network in a way that converts analog tactile 'inputs' into digital colorimetric 'outputs'. Using the material itself as the active player in the decision making process offers possibilities for creating entirely soft devices that respond locally to environmental interactions or act as embedded sensors for feedback loops.

92 citations

Journal ArticleDOI
TL;DR: Elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described.
Abstract: Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.

70 citations

Journal ArticleDOI
TL;DR: A novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal is demonstrated and employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts.
Abstract: Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The use of liquid metals based on gallium for soft and stretchable electronics is discussed, and these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials.
Abstract: The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered.

1,062 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
TL;DR: This review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co- flow, flow-focusing, and step emulsification configurations.
Abstract: Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.

772 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry, and discusses phenomena that warrant further investigations in relevant fields.
Abstract: Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

615 citations

Journal ArticleDOI
Yaqing Liu1, Ke He1, Geng Chen1, Wan Ru Leow1, Xiaodong Chen1 
TL;DR: This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices, and summarizes structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments.
Abstract: Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples’ lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired stru...

518 citations