scispace - formally typeset
Search or ask a question
Author

Ismo Ulmanen

Bio: Ismo Ulmanen is an academic researcher from Memorial Sloan Kettering Cancer Center. The author has contributed to research in topics: Messenger RNA & Transcription (biology). The author has an hindex of 5, co-authored 6 publications receiving 1340 citations.

Papers
More filters
Journal ArticleDOI
01 Mar 1981-Cell
TL;DR: It is shown that virions and purified viral cores contain a unique endonuclease that cleaves RNAs containing a 5' methylated cap structure preferentially at purine residues 10 to 14 nucleotides from the cap, generating fragments with 3'-terminal hydroxyl groups.

716 citations

Journal ArticleDOI
01 Sep 1983-Cell
TL;DR: Using ultraviolet-light-induced crosslinking, it is shown that the P proteins as a complex move from the 3' ends of the vRNA templates down the elongating mRNAs.

255 citations

Journal ArticleDOI
TL;DR: To identify the viral core protein that catalyzes the initiation of transcription via the incorporation of a guanosine residue onto primer fragments, irradiated transcription reactions carried out by viral cores in the presence of [alpha-P]GTP as the only ribonucleoside triphosphate with an unlabeled primer RNA suggested that the viral P1 protein catalyzes this incorporation and hence initiates transcription.
Abstract: Purified influenza viral cores catalyze the entire process of viral RNA transcription, which includes the endonucleolytic cleavage of heterologous RNAs containing cap 1 (m(7)GpppNm) structures to generate capped primers 10-13 nucleotides long, the initiation of transcription via the incorporation of a guanosine residue onto the primers, and elongation of the viral mRNAs [Plotch, S. J., Bouloy, M., Ulmanen, L & Krug, R. M. (1980) Cell 23, 847-858]. To identify which viral core protein (nucleocapsid protein, P1, P2, or P3) recognizes the cap 1 structure on the RNA primer, we irradiated (UV) endonuclease reactions carried out by viral cores in the absence of ribonucleoside triphosphates, with a primer RNA labeled in its cap 1 structure with (32)P. The labeled cap was crosslinked to a protein that had a mobility similar to that of the P3 protein, the smaller of the two basic P proteins, in both one- and two-dimensional gel electrophoresis. This strongly suggests that this crosslinked protein is the viral P3 protein. Competition experiments with unlabeled RNAs containing or lacking a cap 1 structure established that this protein recognizes the cap 1 structure on RNAs. This protein remained associated with the cap throughout the transcription reaction, even after the viral mRNA molecules were elongated. To identify the viral core protein that catalyzes the initiation of transcription via the incorporation of a guanosine residue onto primer fragments, we irradiated transcription reactions carried out by viral cores in the presence of [alpha-(32)P]GTP as the only ribonucleoside triphosphate with an unlabeled primer RNA. A labeled guanosine residue was crosslinked to a protein that had a mobility similar to that of the P1 protein, the larger of the two basic P proteins, in both one-and two-dimensional gel electrophoresis. The transcription reaction conditions required to bring this protein in close association with a labeled guanosine residue so that crosslinking could occur indicated that this association most likely occurred coincident with the guanosine residue's being incorporated onto the primer. These results suggest that the viral P1 protein catalyzes this incorporation and hence initiates transcription.

254 citations

Journal ArticleDOI
TL;DR: The results establish that the viral PB2 protein functions in cap recognition during the endonuclease reaction, indicating that the mutations in the PB2protein found in ts1 and ts6 virions affect only the end onuclease step.
Abstract: The first step in influenza viral mRNA synthesis is the endonucleolytic cleavage of heterologous RNAs containing cap 1 (m 7 GpppNm) structures to generate capped primers that are 10 to 13 nucleotides long, which are then elongated to form the viral mRNA chains. We examined the temperature sensitivity of these steps in vitro by using two WSN virus temperature-sensitive mutants, ts 1 and ts 6, which have a defect in the genome RNA segment coding for the viral PB2 protein. For these experiments, it was necessary to employ purified viral cores rather than detergent-treated virions to catalyze transcription, as preparations of detergent-treated virions contain destabilizing or inhibitory activities which render even the transcription catalyzed by wild-type virus temperature sensitive. Using purified wild-type viral cores, we found that the rates of endonucleolytic cleavage of capped primers and of overall transcription were similar at 39.5 and 33°C, the in vivo nonpermissive and permissive temperatures, respectively. In contrast, the activities of the cap-dependent endonucleases of ts 1 and ts 6 viral cores at 39.5°C were only about 15% of those at 33°C. The steps in transcription after endonucleolytic cleavage of the capped RNA primer were largely, if not totally, temperature insensitive, indicating that the mutations in the PB2 protein found in ts 1 and ts 6 virions affect only the endonuclease step. The temperature-sensitive defect is most likely in the recognition of the 5′-terminal cap 1 structure that occurs as a required first step in the endonuclease reaction: the cap-dependent binding of a specific capped primer fragment to ts 1 viral cores was temperature sensitive under conditions in which binding to wild-type viral cores was not affected by increasing the temperature from 33 to 39.5°C. Thus, our results establish that the viral PB2 protein functions in cap recognition during the endonuclease reaction. Images

92 citations

Journal ArticleDOI
30 Apr 1982-Virology
TL;DR: A high-resolution electron microscopic study of the structure of the influenza virus nucleocapsid and the effects of salt concentration on conformation has been carried out and the helices are shown to be right-handed by metal shadowing.

59 citations


Cited by
More filters
Journal ArticleDOI
07 Sep 2001-Science
TL;DR: Using reverse genetics, it is shown that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice, and high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
Abstract: In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.

1,267 citations

Journal ArticleDOI
TL;DR: A short review on each virus of the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top10.
Abstract: Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.

842 citations

Journal ArticleDOI
TL;DR: Comparative analysis of deduced amino acid sequences disclosed highly conserved regions in PB1 proteins, which may be key structures required for PB1 activities.
Abstract: We determined the origin and evolutionary pathways of the PB1 genes of influenza A viruses responsible for the 1957 and 1968 human pandemics and obtained information on the variable or conserved region of the PB1 protein. The evolutionary tree constructed from nucleotide sequences suggested the following: (i) the PB1 gene of the 1957 human pandemic strain, A/Singapore/1/57 (H2N2), was probably introduced from avian species and was maintained in humans until 1968; (ii) in the 1968 pandemic strain, A/NT/60/68 (H3N2), the PB1 gene was not derived from the previously circulating virus in humans but probably from another avian virus; and (iii) a current human H3N2 virus inherited the PB1 gene from an A/NT/60/68-like virus. Nucleotide sequence analysis also showed that the avian PB1 gene was introduced into pigs. Hence, transmission of the PB1 gene from avian to mammalian species is a relatively frequent event. Comparative analysis of deduced amino acid sequences disclosed highly conserved regions in PB1 proteins, which may be key structures required for PB1 activities.

779 citations

Journal ArticleDOI
16 Apr 2009-Nature
TL;DR: In this paper, the amino-terminal 209 residues of the PA subunit contain the active site of the endonuclease active site, which is shown to be strongly activated by manganese ions, matching observations reported for the intact trimeric polymerase.
Abstract: The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.

715 citations

Journal ArticleDOI
TL;DR: Accumulating evidence on how viral infection and PRR signalling pathways intersect is providing further insights into the function of the pathways involved, their constituent proteins and ways in which they could be manipulated therapeutically.
Abstract: The expression of pattern-recognition receptors (PRRs) by immune and tissue cells provides the host with the ability to detect and respond to infection by viruses and other microorganisms. Significant progress has been made from studying this area, including the identification of PRRs, such as Toll-like receptors and RIG-I-like receptors, and the description of the molecular basis of their signalling pathways, which lead to the production of interferons and other cytokines. In parallel, common mechanisms used by viruses to evade PRR-mediated responses or to actively subvert these pathways for their own benefit are emerging. Accumulating evidence on how viral infection and PRR signalling pathways intersect is providing further insights into the function of the pathways involved, their constituent proteins and ways in which they could be manipulated therapeutically.

655 citations