scispace - formally typeset
Search or ask a question
Author

Isobel Atkin

Bio: Isobel Atkin is an academic researcher from Health Protection Agency. The author has an hindex of 1, co-authored 1 publications receiving 371 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A list of known cross‐contaminated cell lines is compiled, drawn from 68 references, and it is essential to check the sample itself by performing authentication testing, even if there are no previous publications on cross-contamination for that cell line.
Abstract: Continuous cell lines consist of cultured cells derived from a specific donor and tissue of origin that have acquired the ability to proliferate indefinitely. These cell lines are well-recognized models for the study of health and disease, particularly for cancer. However, there are cautions to be aware of when using continuous cell lines, including the possibility of contamination, in which a foreign cell line or microorganism is introduced without the handler's knowledge. Cross-contamination, in which the contaminant is another cell line, was first recognized in the 1950s but, disturbingly, remains a serious issue today. Many cell lines become cross-contaminated early, so that subsequent experimental work has been performed only on the contaminant, masquerading under a different name. What can be done in response—how can a researcher know if their own cell lines are cross-contaminated? Two practical responses are suggested here. First, it is important to check the literature, looking for previous work on cross-contamination. Some reports may be difficult to find and to make these more accessible, we have compiled a list of known cross-contaminated cell lines. The list currently contains 360 cell lines, drawn from 68 references. Most contaminants arise within the same species, with HeLa still the most frequently encountered (29%, 106/360) among human cell lines, but interspecies contaminants account for a small but substantial minority of cases (9%, 33/360). Second, even if there are no previous publications on cross-contamination for that cell line, it is essential to check the sample itself by performing authentication testing.

422 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The issues surrounding the use of breast cancer cell lines as experimental models are discussed, in light of these revised clinical classifications, and suggestions for improving their use in translational breast cancer research are put forward.
Abstract: Breast cancer is a complex and heterogeneous disease. Gene expression profiling has contributed significantly to our understanding of this heterogeneity at a molecular level, refining taxonomy based on simple measures such as histological type, tumour grade, lymph node status and the presence of predictive markers like oestrogen receptor and human epidermal growth factor receptor 2 (HER2) to a more sophisticated classification comprising luminal A, luminal B, basal-like, HER2-positive and normal subgroups. In the laboratory, breast cancer is often modelled using established cell lines. In the present review we discuss some of the issues surrounding the use of breast cancer cell lines as experimental models, in light of these revised clinical classifications, and put forward suggestions for improving their use in translational breast cancer research.

1,276 citations

Journal ArticleDOI
08 Aug 2018-Nature
TL;DR: The extent, origins and consequences of genetic variation within human cell lines are studied, providing a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.
Abstract: Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.

601 citations

Journal ArticleDOI
01 Jan 2012
TL;DR: It has to be kept in mind that cell lines do not behave identically with primary cells and should not be used to replace primary cells, and key control experiments using primary cells should always be performed.
Abstract: Cell lines are often used in place of primary cells to study biological processes. However, care must be taken when interpreting the results as cell lines do not always accurately replicate the primary cells. In this article, we will briefly talk about advantages and disadvantages of cell lines and then discuss results using the mouse Sertoli cell line, MSC-1, compared with primary mouse Sertoli cells. MSC-1 cells resemble Sertoli cells morphologically and possess several biochemical markers associated with Sertoli cells. Studies have demonstrated that the function and regulation of retinoic acid receptor α (RARα) is similar between MSC-1 and rat Sertoli cells. However, MSC-1 cells lack some of the immune privilege properties associated with primary Sertoli cells, including survival in animals with a fully functional immune system. Therefore, it has to be kept in mind that cell lines do not behave identically with primary cells and should not be used to replace primary cells. In order to strengthen the findings, key control experiments using primary cells should always be performed.

388 citations

Journal ArticleDOI
TL;DR: Common methods of in vitro testing, including dissociated, organotypic, organ/explant, and 3-D cultures, are reviewed here with specific focus on retaining cell and molecular interactions and physiological parameters that determine cell phenotypes and their corresponding responses to bioactive agents.

348 citations

Journal ArticleDOI
TL;DR: It is found that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell lines of unknown origin.
Abstract: Human tumor–derived cell lines are indispensable tools for basic and translational oncology. They have an infinite life span and are easy to handle and scalable, and results can be obtained with high reproducibility. However, a tumor-derived cell line may not be authentic to the tumor of origin. Two major questions emerge: Have the identity of the donor and the actual tumor origin of the cell line been accurately determined? To what extent does the cell line reflect the phenotype of the tumor type of origin? The importance of these questions is greatest in translational research. We have examined these questions using genetic profiling and transcriptome analysis in human glioma cell lines. We find that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell line of unknown origin.

311 citations